
Copyright  1997
ASSET InterTech, Inc.
Texas Instruments Inc.
All Rights Reserved

Revision A
31 Aug 1992
Authors: Adam Sheppard, Giridhar V.

PRELIMINARY

Hierarchical Scan
Description Language
Syntax Specification

ASSET InterTech,
Inc.

i

Table of Contents
1. Identification ... 1

1.1. Product Statement... 1
1.2. Scope.. 2
1.3. Important Notice .. 2
1.4. Nomenclature .. 2
1.5. Related Documents ... 7
1.6. Constraints .. 8

2. Introduction to Hierarchical Scan Description Language.. 9
2.1. Language Elements... 9

2.1.1. The VHDL Statement Subset... 9
2.1.2. The Entity, the Package, and the Package Body ... 9

2.2. The Entity Description for a Device.. 9
2.2.1. Generic Parameter .. 10
2.2.2. Logical Port Description... 10
2.2.3. Use Statement(s) .. 10
2.2.4. Optional Device Description .. 10
2.2.5. Optional Port Description(s)... 10
2.2.6. Package Pin Mapping.. 11
2.2.7. Scan Port Identification ... 11
2.2.8. Device-Dependent Descriptions... 11
2.2.9. Optional Data Registers(s)... 12
2.2.10. Optional Symbol Table(s) .. 12
2.2.11. Register Access... 14
2.2.12. Optional Register Information.. 14
2.2.13. Boundary Register Description .. 15
2.2.14. Optional Boundary Register Symbol(s) .. 15
2.2.15. Optional Bus Description(s) ... 15
2.2.16. Optional Constraint Description(s) ... 16
2.2.17. Optional Design Warning... 16

2.3. The Entity Description for a Module ... 16
2.3.1. Generic Parameter .. 17
2.3.2. Logical Port Description... 18
2.3.3. Use Statement(s) .. 18
2.3.4. Optional Module Description.. 18
2.3.5. Optional Port Description(s)... 18
2.3.6. Package Pin Mapping.. 18
2.3.7. Scan Port Identification ... 18
2.3.8. Optional Member Description(s) .. 19
2.3.9. Optional Symbol Table Description(s).. 20
2.3.10. Optional Bus Description(s) ... 20
2.3.11. Path Descriptions .. 20
2.3.12. Optional External Path Declaration(s).. 24
2.3.13. Static Path Declaration(s).. 25
2.3.14. Optional Dynamic Path Declaration(s) ... 26
2.3.15. Optional Member Connections .. 27
2.3.16. Path Requirements.. 27
2.3.17. Optional Constraint Description(s) ... 30
2.3.18. Optional Design Warning... 30

3. Using HSDL... 31
3.1. Describing Architectures Above the Device Level.. 31
3.2. Describing a Board, Box, Subsystem, or System ... 32
3.3. Describing a Multichip Module ... 33
3.4. Describing a Backplane ... 33
3.5. Assigning a Name to a Subset of a Test Register .. 34

ii

3.6. Assigning a Name to a Bus on a Board.. 35
3.7. Assigning a Symbolic Name to a Value ... 35
3.8. Assigning Symbolic Names to a Test Register or Bus .. 35
3.9. Preventing Illegal Hardware Conditions ... 36
3.10. Adding Descriptions to Each Item in the Entity... 36
3.11. Controlling Ad-Hoc Scan Path Multiplexing.. 36

4. Example HSDL Device Description... 37
5. Example HSDL Module Descriptions... 41

5.1. HSDL for General Demonstration Module.. 41
5.2. HSDL for Figure 3-1 of IEEE Std 1149.1-1990... 42
5.3. HSDL for Figure 3-2 of IEEE Std 1149.1-1990... 43
5.4. HSDL for Figure 3-3 of IEEE Std 1149.1-1990... 44
5.5. HSDL for Fictional Module... 45

A. Hierarchical Scan Description Language Syntax ... 49
A.1. List of HSDL Statements ... 49

B. HSDL Standard VHDL Package Definitions... 102
B.1. HSDL_device Standard VHDL Package... 102
B.2. HSDL_module Standard VHDL Package ... 102

Revision A HSDL Syntax Specification

PRELIMINARY 1 31-Aug-1992

1.
Identification

1.1. Product Statement
During late 1989 and 1990, representatives of Hewlett-Packard developed and promoted a
language for describing boundary-scan devices, called Boundary Scan Description Language5
(BSDL). The intended applications of BSDL were as input to a test driver, as input to a
compliance monitor, and as input to an automated boundary-scan synthesis tool. All three
intended applications are automated, utilizing software to drive, validate, or even create the
boundary-scan hardware.

Also during this time, Texas Instruments released the ASSET Scan-Based Diagnostic System,10
the first system to support IEEE Std 1149.1-1990. The first generation of ASSET used
Configuration Files to describe 1149.1 devices, boards, and systems. ASSET Configuration
Files were given to HP to aid in the development of BSDL.

HP has done an excellent job in working with industry to fan out the BSDL requirements
specifications and accept inputs for improvements. BSDL has become a de-facto standard, and15
is supported by many ATE, CAE, and semiconductor vendors and customers.

BSDL focuses on describing only 1149.1 compliant devices. It does not address 1149.1 at the
board, system, or multi-chip module levels. BSDL also needs a few device-level features added
to better support interactive debug. Manipulating test registers as a stream of bits is not easy,
and determining the values on device pin buses or on fields within test data registers by looking20
at binary or hexadecimal output is impossible. ASSET 1.X Configuration Files, as simple as they
were, addressed this issue.

ASSET marketing and support personnel began being questioned about when ASSET would
support BSDL. In addition, customers also began asking for enhancements to the ASSET 1.X
Configuration File language. They wanted compatibility with existing BSDL files to avoid rework,25
and they wanted more flexibility to add convenience features for interactive use.

In response, Hierarchical Scan Description Language was created. It addresses a number of
deficiencies in both BSDL and Configuration Files. HSDL supports all the features of BSDL for
industry compatibility, providing support for automatic test-pattern generation, validation, and
synthesis tools. HSDL also supports all the convenience features of Configuration Files,30
providing the ability to describe boards, name subsets of test registers, create symbol tables for
test registers or fields that use symbolic, named values, prevent illegal states from being
established, and so forth.

In addition, HSDL supports new features that increase its powers in the areas covered by both
BSDL and Configuration Files. For automated tools, HSDL includes new features such as those35
for describing different status values captured by a test register and designating them as "pass"
or "fail" values. For interactive use, HSDL includes new features such as those for adding
descriptive text to each item in the entity.

HSDL is a strict superset of BSDL. All statements that are part of HSDL device entities but not
part of BSDL are optional. Thus, BSDL is acceptable input to an HSDL translator. HSDL device40
entities can be made acceptable to a BSDL translator simply by feeding them to the BSDL
translator and deleting all the new statements that cause syntax errors, with no loss or change in
meaning.

HSDL is similar to an ongoing effort in the EDIF Test Committee, which is seeking to define BST
(Boundary-Scan Test) as an area of EDIF that will describe boundary-scan devices and boards.45
Much of BST and its predecessor EBST has been incorporated into HSDL. BST includes netlist
information (because EDIF does) and test vector information for the device and board being

Revision A HSDL Syntax Specification

PRELIMINARY 2 31-Aug-1992

described. These items were omitted from HSDL to keep it focused on the original spirit of
BSDL.

TI is supporting BSDL by making BSDL files available for TI devices, and has upgraded the first50
generation of ASSET to take BSDL as an input. TI and Teradyne have jointly developed the
Serial Vector Format (SVF) and have placed this specification in the public domain for review.
The industry did not have a common serial vector format standard, and SVF was developed to
address this problem. With the introduction of HSDL, TI continues its effort of working with
industry to develop or promote standard data formats that make it easier for customers to adopt55
1149.1.

1.2. Scope
This document describes in detail the new statements of HSDL and their meaning. It does not
describe BSDL, as many sources of information on BSDL already exist and HSDL does not
change any of the original BSDL statements in any way.60

1.3. Important Notice
This document defines Texas Instruments' (TI) Hierarchical Scan Description Language (HSDL).
Texas Instruments reserves the right to make changes to this document without notice. TI
advises its customers to obtain the latest version of the relevant information to verify that the
information being relied upon is current.65

Although TI hereby expressly disclaims any and all warranties whatsoever regarding the HSDL
Syntax Specification, TI has published this document with the intent that HSDL will be seriously
considered and adopted, in whole, by the test and measurement and semiconductor
marketplaces.

To obtain copies of the current HSDL Syntax Specification, please contact the Test Technology70
Center of Texas Instruments:

Mailing Address: Test Technology Center
P.O. Box 869305
M/S 8407
Plano, TX 75086

Phone: (214) 575-2577
X.400 E-mail Address: /ADMD=MCI/PRMD=TI/C=US/G=ADAM/S=SHEPPARD
MCIMail ID: 5333075

TI welcomes all feedback in order to improve the HSDL Syntax Specification as necessary.
Please direct comments to Adam Sheppard:

75
Phone: (214) 575-2599
X.400 E-mail Address: /ADMD=MCI/PRMD=TI/C=US/G=ADAM/S=SHEPPARD
MCIMail ID: 5333075

This document is Copyright  1992, Texas Instruments Incorporated.

1.4. Nomenclature

ambiguous........................ Ambiguous values have combinations of don't-care bits such that
two such values could be selected as a replacement for the same bit
pattern.80

ASSET A design debug and verification tool from ASSET InterTech, Inc.

Revision A HSDL Syntax Specification

PRELIMINARY 3 31-Aug-1992

arithmetic operator........... A constraint operator that performs multiplication, division, addition,
or subtraction of two values.

associative operator......... An arithmetic, logical, or relational operator whose left and right
operands can be exchanged without altering the result.85

attribute............................. A VHDL attribute is a named item and associates some value with
another named object, such as the entity.

BIST Built-in self test.

BSDL Boundary-Scan Description Language. Hardware description
language developed by Hewlett-Packard Company.90

bus A collection of bits from one or more test registers or buses, chosen
to represent a natural grouping of data in a design. An HSDL bus as
declared in the BUS_COMPOSITION attribute.

cell..................................... An 1149.1 scan cell designed into a device. A BSDL constant that
defines the characteristics of a scan cell.95

CLAMP A new instruction in 1149.1 Supplement A that shifts through the
BYPASS register, but drives device outputs based on the contents
of the BOUNDARY register.

constraint.......................... An expression that is evaluated prior to each scan operation, that
determines if the values to be shifted into the hardware will violate a100
design constraint and cause possible hardware damage. An HSDL
constraint as declared in the CONSTRAINTS attribute.

concatenated test registerA test register comprised of two or more other test registers.

configuration file A file format used by ASSET 1.X to describe devices and modules.
Two formats were used: device configuration files and module105
configuration files. Each consisted of five different statement types
describing such things as test registers, instructions, register fields,
members, paths, module buses, and constraints.

data-register scan............. A scan operation that includes shifting new data into test data
registers from the TDI buffers and shifting captured data out into the110
TDO buffers while the TAP controller is in Shift-DR state. The test
controller automatically shifts a number of bits equal to the
combined length of the selected test data registers of all devices in
the scan path.

description........................ An HSDL or BSDL file containing an entity describing a unit under115
test. Any comments attached to an item in the HSDL entity with a
..._DESCRIPTION attribute to increase understandability.

device entity An HSDL device entity describes an 1149.1 device, with test
registers, instructions, and a TAP.

device under test.............. A unit under test that is a device.120

Revision A HSDL Syntax Specification

PRELIMINARY 4 31-Aug-1992

don't-care.......................... A BIT value representing a bit whose value does not matter.

DR scan............................. See data-register scan.

dynamic path A set of controlled paths that may be attached to the TMS signal of
the scan path or have their TMS lines forced high or low. A
hardware construct described by an HSDL DYNAMIC_PATH125
attribute.

dynamic path case A certain configuration of a dynamic path, where one of the
controlled paths is attached to the TMS line.

entity An HSDL entity or entity identifier as defined in the BSDL entity
statement.130

external path..................... A connector of any type where TDO leaves the module and TDI
returns without a connection between. An item described by an
HSDL EXTERNAL_PATH constant.

generic A parameter to the entity, used in BSDL and HSDL to contain the
package type used in the design.135

HIGHZ................................ A new instruction in 1149.1 Supplement A that shifts through the
BYPASS register, but places all three-state or bidirectional device
outputs in a high-impedance state.

HSDL Hierarchical Scan Description Language. A superset of BSDL
developed by Texas Instruments Incorporated.140

identifier............................ A sequence of characters used to name an object.

implementation-defined ... Behavior that is described as implementation-defined is subject to
interpretation by each implementation of a test controller. Each test
controller may behave differently when an implementation-defined
construct is used.145

in port................................ A port that describes an input pin.

inout port A port that describes a bidirectional pin.

instruction An HSDL instruction opcode described by the HSDL
INSTRUCTION_OPCODE attribute.

instruction-register scan.. A scan operation that includes shifting new data into instruction150
registers from the TDI buffers and shifting captured data out into the
TDO buffers while the TAP controller is in Shift-IR state. The test
controller automatically shifts a number of bits equal to the
combined length of the instruction registers of all devices in the scan
path.155

IR scan See instruction-register scan.

logical operator A constraint operator that performs operations on individual bits of a
value.

Revision A HSDL Syntax Specification

PRELIMINARY 5 31-Aug-1992

LSB.................................... Least-significant bit. The bit whose binary value is 20.

member A device or module mounted on a module. An HSDL device or160
module entity contained as a member within a module entity.

member connection An HSDL CONNECTIONS attribute used to connect something to
each of the external paths of the members of a module.

module entity.................... An HSDL module entity describes an 1149.1 module, which contains
other device and module entities arranged along a scan path.165

MSB................................... Most-significant bit. The bit whose binary value is 2n-1, where n is
the number of bits in the value.

net A set of device pins that are all interconnected.

netlist A list of interconnections on a device or module. See net.

normal mode..................... A normal-mode instruction does not affect the functionality of a170
device in any way.

operator The person performing a test. In the context of constraints, a word
or special symbol that represents a logical, relational, or arithmetic
operation to perform.

out port A port that describes an output pin.175

package............................. An HSDL package identifier declared in the PIN_MAP_STRING
constant.

path An HSDL path declared in an STATIC_PATH, DYNAMIC_PATH, or
EXTERNAL_PATH constant.

path entry.......................... Something that can be listed in a static path or dynamic path180
declaration. A static path, dynamic path, external path, member, or
member's external path.

port.................................... Represents a named device pin. An HSDL port declared in the
PORT statement.

primary scan path A scan path that is a complete TDI-to-TDO connection from a TDI185
input of the module to a TDO output of the module, including all
member devices, member modules, external paths, static paths, and
dynamic paths that make up the primary scan path.

private instruction An instruction opcode that performs proprietary or dangerous
operations when shifted into the instruction register. A private190
instruction cannot be shifted in by the test controller.

pure test connector A connector whose TAP_SCAN_CLOCK, TAP_SCAN_MODE, and
TAP_SCAN_RESET ports are all in ports so that a test controller
can be plugged into it.

Revision A HSDL Syntax Specification

PRELIMINARY 6 31-Aug-1992

pure UUT connector......... A connector whose TAP_SCAN_CLOCK, TAP_SCAN_MODE, and195
TAP_SCAN_RESET ports are all out ports so that a scannable UUT
can be plugged into it.

relational operator............ A constraint operator that compares the equality or ordering of two
values.

reserved word................... A language element (identifier) that is used as part of the language200
and that cannot be used to name an object in a declaration.

scan operation.................. An operation that manipulates the IEEE Std 1149.1 test bus to
perform test operations.

scan path A serial TDI-to-TDO connection of devices and modules forming a
complete 1149.1 test bus.205

Scan Path Linker A device (SN74ACT8997) from Texas Instruments that multiplexes
secondary scan paths in and out of the primary scan path.

selected test connector.... The test connector that the test controller is plugged into for the
duration of the test.

semantics.......................... Rules that specify the restrictions and meaning of a computer210
language.

standard practice Rules followed when writing VHDL for use in BSDL or HSDL entities
that simplify the computer programs that translate BSDL and HSDL.

static path A serial TDI-to-TDO connection of member devices, member
modules, and scan paths that all share the same TAP control215
signals. A scan path described by an HSDL STATIC_PATH
constant.

symbol An identifier that represents a list of one or more numbers or
patterns. An HSDL symbol declared in the SYMBOL_TABLE
constant.220

symbol table A collection of related symbols. An HSDL symbol table declared in
the SYMBOL_TABLE constant.

syntax................................ The rules that describe what characters to write to form a program.
The program is meaningless without semantics.

TAP control signals.......... For the purposes of this specification, the TAP control signals are225
Test Clock (TCK), described by the TAP_SCAN_CLOCK attribute;
Test Mode Select (TMS), described by the TAP_SCAN_MODE
attribute, and Test Reset (TRST), described by the
TAP_SCAN_RESET attribute.

TDI symbol........................ A symbol that may be used to represent a value to shift into a UUT,230
but not to represent a value that is shifted out.

TDO symbol...................... A symbol that may be used to represent a value shifted out of a
UUT, but not to represent a value to shift in.

Revision A HSDL Syntax Specification

PRELIMINARY 7 31-Aug-1992

test connector A connector that a test controller can be plugged into. See pure test
connector.235

test controller The computer system, hardware, and/or software used to test the
unit under test by applying stimuli and observing the response.

test mode A test-mode instruction affects the functionality of a device in some
way, usually by overriding the device outputs or the system logic
inputs.240

test register....................... An HSDL test register declared in the HSDL REGISTER_ACCESS
attribute.

undefined.......................... Behavior that is described as undefined causes unpredicable
behavior in a test controller. An HSDL description may not rely on
undefined behavior in a construct.245

unit under test The HSDL entity, either a device or module, that is being tested by
the test controller.

user-defined package....... A BSDL package and package body that defines cells for use in the
BOUNDARY_REGISTER attribute.

UUT See unit under test.250

UUT connector A connector that a scannable UUT can be plugged into. See pure
UUT connector.

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

violated constraint A constraint that evaluates true. A violated constraint indicates that255
a hardware design constraint would be violated, resulting in possible
damage to the unit under test.

1.5. Related Documents
Advanced Logic and Bus Interface Logic. Texas Instruments, 1991.

ASSET Scan-Based Diagnostics User's Guide. Texas Instruments, 1991.260

HP Boundary-Scan Tutorial and BSDL Reference Guide. Hewlett-Packard Company, 1990.

IEEE Std 1149.1-1990, Test Access Port and Boundary-Scan Architecture. IEEE, 1990.

IEEE Std 1149.1-1990 Supplement A. IEEE, 1992.

IEEE Std 1149.1-1990 Unofficial Supplement B, Boundary-Scan Description Language. 1149.1
BSDL Working Group, 1992.265

IEEE Std 1076-1987, VHDL Language Reference Manual. IEEE, 1987.

Revision A HSDL Syntax Specification

PRELIMINARY 8 31-Aug-1992

1.6. Constraints
HSDL supports only IEEE Std 1149.1-1990 compliant devices and modules.

A great deal of leniency is provided when describing modules, as allowed by 1149.1. Some
pathologically complex modules cannot be described by HSDL in the interests of keeping the270
language manageable. Fully describing all modules requires a netlist for the scan paths and a
simulation model for the dynamic scan paths, which is considered beyond the scope of HSDL.

The language is designed in the spirit of BSDL, and hence the pros and cons of BSDL syntax
remain.

HSDL may undergo changes based on the inputs received from the industry when this document275
is circulated.

Revision A HSDL Syntax Specification

PRELIMINARY 9 31-Aug-1992

2.
Introduction to Hierarchical Scan Description Language

2.1. Language Elements

2.1.1. The VHDL Statement Subset280

HSDL employs the same subset of VHDL statements used by BSDL. However, the VHDL
statements are used in more flexible ways in HSDL than in BSDL. For example, BSDL only
attaches attributes to the entity. HSDL attaches attributes to the entity, the ports, and to
Symbol Table and Path constants.

2.1.2. The Entity, the Package, and the Package Body285

These three different VHDL items are used in the same manner in HSDL as they are in
BSDL. HSDL has two types of entities, however: device entities and module entities. A
device entity describes an 1149.1 device, with test registers, instructions, and a TAP. A
module entity describes an 1149.1 module, which contains other device and module entities
arranged along a scan path.290

A user-defined package for creating new cell types is of no use in a module entity, so a
module entity cannot contain user-defined packages.

2.2. The Entity Description for a Device
A device entity in HSDL follows the same order and syntax as an entity in BSDL. The HSDL
statements are optional and may appear only at predefined points in the entity.295

entity My_IC is -- an entity for my IC
Generic Parameter
Logical Port Description
Use Statement(s) *
[Optional Device Description] *300
[Optional Port Description(s)] *
Package Pin Mapping
Scan Port Identification
TAP Description

Device-Dependent Descriptions **305
[Optional Data Register(s)] **
[Optional Symbol Table(s)] *
Register Access
[Optional Register Information] *

Boundary Register Description310
[Optional Boundary Register Symbol(s)] *
[Optional Bus Description(s)] *
[Optional Constraint Description(s)] *
[Optional Design Warning] **

end My_IC;315

Revision A HSDL Syntax Specification

PRELIMINARY 10 31-Aug-1992

An asterisk (*) designates areas of HSDL that are new or that were enhanced from BSDL. Two
asterisks (**) designate areas of HSDL that are BSDL but that were not completely discussed in
the HP Boundary-Scan Tutorial and BSDL Reference Guide.

The order of elements shown above is a required standard practice in order to simplify non-
VHDL applications, like BSDL or HSDL translators. Each element of the entity is examined and320
discussed in the subsections that follow.

2.2.1. Generic Parameter
Unchanged from BSDL. See generic (BSDL) in the HP Boundary-Scan Tutorial and BSDL
Reference Guide. The generic parameter is mandatory.

2.2.2. Logical Port Description325

Unchanged from BSDL. See port (BSDL) in the HP Boundary-Scan Tutorial and BSDL
Reference Guide. The port statement is mandatory.

2.2.3. Use Statement(s)
The use statement is primarily unchanged from BSDL. See use (BSDL) in the HP
Boundary-Scan Tutorial and BSDL Reference Guide. The statement use330
STD_1149_1_1990.all; is mandatory and must appear first, followed by the optional user-
defined packages.

A new package has been defined for HSDL device entities that declares all attributes and
subtypes used by a device entity. In addition, it identifies the entity as an HSDL device, and
not simply a BSDL device. The new package is HSDL_device, as shown in this example.335

use HSDL_device.all; -- identifies the entity as a device with HSDL extensions

2.2.4. Optional Device Description
This optional statement describes the device. It appears primarily for documentation
purposes. Ideally, it should describe the functionality of the device in sufficient detail to
meet the requirements for documenting devices found in Chapter 12 of IEEE Std 1149.1-340
1990. As a description, it may be displayed by interactive tools or by the test controller itself
as a description of the device under test.

attribute DEVICE_DESCRIPTION of ttl74bct8374 : entity is
 "SN74BCT8374 is a Scan Test Devices with Octal D-Type Edge-Triggered " &
 "Flip-Flops. In normal mode, on the positive transition of CLK the Q " &345
 "outputs take on the logic levels setup up at the D inputs. The " &
 "output enable OC_NEG is used to place the Q outputs in the " &
 "high-impedance state, but does not affect the internal operations " &
 "of the flip-flop.";

2.2.5. Optional Port Description(s)350

Next comes optional statements for describing the ports of the device. The same syntax is
used in the HSDL module entity for describing the ports of the module. The normal function
of each port should be described in sufficient detail so that the operator can understand how
the device normally operates.

Revision A HSDL Syntax Specification

PRELIMINARY 11 31-Aug-1992

Descriptions need not be supplied for the ports identified as scan ports by the355
TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK, TAP_SCAN_MODE, and
TAP_SCAN_RESET attributes (see Scan Port Identification). The description of these ports
is already known and is described in full by IEEE Std 1149.1-1990. Suitable descriptions are
synthesized by the HSDL translator for these ports if no description has been supplied for
them.360

attribute PORT_DESCRIPTION of OC_NEG : signal is
 "Output control of the device. All pins on the output bus Q can be " &
 "set to high-impedance by placing a 1 on the OC_NEG pin. Disabling " &
 "the output bus Q has no effect on the internal operation of the " &
 "flip-flops.";365

2.2.6. Package Pin Mapping
Unchanged from BSDL. See attribute PIN_MAP (BSDL) and constant-(entity) (BSDL) in the
HP Boundary-Scan Tutorial and BSDL Reference Guide. The PIN_MAP attribute is
mandatory and must appear first, followed by one or more PIN_MAP_STRING constants.

2.2.7. Scan Port Identification370

Unchanged from BSDL. See attribute TAP_SCAN_CLOCK (BSDL), attribute TAP_SCAN_IN
(BSDL), attribute TAP_SCAN_MODE (BSDL), attribute TAP_SCAN_OUT (BSDL), and
attribute TAP_SCAN_RESET (BSDL) in the HP Boundary-Scan Tutorial and BSDL
Reference Guide. The statements may appear in any order. All but the TAP_SCAN_RESET
attribute are required.375

2.2.8. Device-Dependent Descriptions
All device-dependent descriptions are retained unchanged from BSDL. See attribute
INSTRUCTION_LENGTH (BSDL), attribute INSTRUCTION_OPCODE (BSDL), attribute
INSTRUCTION_CAPTURE (BSDL), attribute INSTRUCTION_DISABLE (BSDL), and
attribute INSTRUCTION_PRIVATE (BSDL) in the HP Boundary-Scan Tutorial and BSDL380
Reference Guide. The INSTRUCTION_LENGTH attribute is mandatory and must appear
first, followed by the mandatory INSTRUCTION_OPCODE attribute and the mandatory
INSTRUCTION_CAPTURE attribute. The optional INSTRUCTION_DISABLE and
INSTRUCTION_PRIVATE attributes may appear next in any order. In addition, the recently
introduced INSTRUCTION_GUARD attribute of BSDL is also available.385

Private instructions identified by the INSTRUCTION_PRIVATE attribute cannot be shifted
into the device using HSDL. Private instructions invoke proprietary or dangerous test
operations in the device and cannot safely be used.

The optional INSTRUCTION_GUARD attribute of BSDL identifies an opcode that places the
Bypass Register between TDI and TDO, and drives the outputs of the device using the390
previous contents of the Boundary-Scan Register. This is the behavior defined by the
CLAMP instruction of IEEE Std 1149.1-1990 Supplement A. This statement identifies the
opcode to software. An example of this type of statement appears in the BSDL for the BCT
octals from Texas Instruments.

attribute INSTRUCTION_GUARD of ttl74bct8374 : entity is "SETBYP";395

The optional INSTRUCTION_NORMAL and INSTRUCTION_TEST attributes of BSDL
identify an opcode as either a normal-mode or test-mode instruction. Normal-mode
instructions do not affect the normal operation of the device in any way. Test-mode
instructions affect the normal operation, but the exact effect is unspecified. All or part of the
normal operation of the device is suspended and replaced with a test operation.400

The instructions BYPASS, SAMPLE, IDCODE, and USERCODE, defined by 1149.1, must
be normal-mode instructions and do not need to be listed in the INSTRUCTION_NORMAL
attribute. The instructions EXTEST, INTEST, RUNBIST, HIGHZ, and CLAMP, defined by

Revision A HSDL Syntax Specification

PRELIMINARY 12 31-Aug-1992

1149.1 and Supplement A, must be test-mode instructions and do not need to be listed in the
INSTRUCTION_TEST attribute. If an instruction is not defined by 1149.1 and is not listed in405
either the INSTRUCTION_NORMAL or INSTRUCTION_TEST attributes, its effect on the
hardware is unknown.

 attribute INSTRUCTION_NORMAL of ttl74bct8374 : entity is
 "BYPASS, SAMPLE, READBN, CELLTST, SCANCN";

 attribute INSTRUCTION_TEST of ttl74bct8374 : entity is410
 "EXTEST, INTEST, TRIBYP, SETBYP, RUNT, READBT, TOPHIP, SCANCT";

An optional HSDL statement, INSTRUCTION_DESCRIPTION, follows the BSDL instruction
statements and can be used to provide descriptions of each instruction listed in the
INSTRUCTION_OPCODE attribute. The descriptions may be displayed by the test
controller to help the operator understand the purpose and function of each instruction.415

Descriptions need not be supplied for the standard instructions required by IEEE Std 1149.1-
1990 and by Supplement A. These instructions include EXTEST, SAMPLE/PRELOAD,
BYPASS, INTEST, RUNBIST, IDCODE, USERCODE, CLAMP, and HIGHZ. The description
of these instructions is already known and is described in full by IEEE Std 1149.1-1990.
Suitable descriptions are synthesized by the HSDL translator for these instructions if no420
description has been supplied for them. If instruction descriptions are used, it is
recommended that descriptions for INTEST and RUNBIST be supplied rather than
synthesized, as the operation of these instructions can vary from device to device.

attribute INSTRUCTION_DESCRIPTION of My_IC : entity is
 "BYPASS ('Select BYPASS register in normal mode.')," &425
 "EXTEST ('Select Boundary-Scan register in test mode; control device" &
 "inputs and outputs using the contents of the Boundary.')," &
 "SAMPLE ('Select Boundary-Scan register in normal mode; sample " &
 "device inputs and outputs into the Boundary.')";

2.2.9. Optional Data Registers(s)430

Unchanged from BSDL. See attribute IDCODE_REGISTER (BSDL) and attribute
USERCODE_REGISTER (BSDL) in the HP Boundary-Scan Tutorial and BSDL Reference
Guide. The optional IDCODE_REGISTER attribute must appear first, followed by the
optional USERCODE_REGISTER attribute.

2.2.10. Optional Symbol Table(s)435

Next the optional HSDL statements describing symbol tables may appear. Symbol tables
are groups of related symbol names. Each symbol name stands for one or more symbol
values.

Symbol tables are useful for describing values by name rather than by number. IEEE Std
1149.1-1990 already contains one example of a test register with an associated symbol440
table: the instruction register. The standard never refers to "instruction 0"; instead it refers
to "the EXTEST instruction". Other test registers or subsets of test registers often have
named opcodes defined in the data sheet to describe the possible values in a mnemonic
way.

Symbol tables are defined separately from the elements (test registers, buses, ports) that445
they are associated with. If more than one test register in the entity uses the same opcodes,
only one symbol table needs to be defined. That symbol table is then associated with each
of the test registers.

constant BCR_Opcodes : SYMBOL_TABLE :=
-- symbol (value, ..., value)450
 "SAMTOG (00)," &
 "PRPG (01)," &
 "PSA (10)," &
 "PSAPRPG (11)";

Revision A HSDL Syntax Specification

PRELIMINARY 13 31-Aug-1992

Multiple symbol tables may be created. The symbol table itself must be defined before any455
of the attributes for it, because all the attributes refer to both the symbol table name and the
symbol names. The optional attributes for a symbol table may appear in any order following
the symbol table.

Consider the uses for symbols. Symbols can be used in place of values being shifted into
the device, and symbols could be displayed in place of values shifted out of the device. This460
suggests two possible types of symbols: symbols that can be shifted in and symbols that can
be shifted out. HSDL allows symbols to be classified as used only for shifting in
(SYMBOL_OF_TDI), only for shifting out (SYMBOL_OF_TDO), or both (the default).

If a symbol name is not listed as a SYMBOL_OF_TDI or as a SYMBOL_OF_TDO for the
symbol table, it is considered to be both. The symbol can be used to represent a value to465
shift into the device, and it can be displayed instead of a value shifted out of the device.

Why make this distinction? The 1149.1 standard contains a precedent: the instruction
register captures and shifts out a status value, but the value shifted into the instruction
register and latched is an instruction. Two different types of patterns with two totally different
meanings are thus used by the instruction register. The status values captured and shifted470
out are SYMBOL_OF_TDO, whereas the instructions shifted in and latched are
SYMBOL_OF_TDI.

constant INSTRUCTIONS : SYMBOL_TABLE :=
 "EXTEST (000)," &
 "SAMPLE (001)," &475
 "BYPASS (1XX, 01X)," &
 "GOOD_STATUS (001)," &
 "BAD_STATUS (XX0)";
attribute SYMBOL_OF_TDI of INSTRUCTIONS : constant is
 "EXTEST, SAMPLE, BYPASS";480
attribute SYMBOL_OF_TDO of INSTRUCTIONS : constant is
 "GOOD_STATUS, BAD_STATUS";

Symbols designated SYMBOL_OF_TDO (either explicitly, or by defaulting to both TDI/TDO)
cannot have ambiguous values. Ambiguous values have combinations of don't-care bits
such that two symbols could be selected as a replacement for the same bit pattern. If TDO485
symbols were allowed to be ambiguous, the test controller would potentially need to select
an infinite number of symbols for replacement, and thus the output would appear as a long
list of symbol names rather than just one.

Descriptions can be associated with each symbol. The descriptions should indicate the
purpose, function, and meaning of the symbol. The test controller may display this490
description to help the operator select a symbol for shifting in, or interpret the meaning of a
symbol that has been shifted out.

attribute SYMBOL_DESCRIPTION of BCR_Opcodes : constant is
-- symbol (description)
 "SAMTOG ('Samples device inputs on input bus; toggles device outputs " &495
 "from output bus.')," &
 "PRPG ('Conducts 16-bit Pseudo-Random Pattern Generation using the " &
 "contents of the input and output buses of the Boundary-Scan " &
 "register as an initial value. The Q outputs of the device " &
 "will be set to the value in the output bus. A new pattern " &500
 "is generated on each TCK in Run-Test/Idle state.')," &
 "PSA ('Conducts 16-bit Parallel Signature Analysis using the " &
 "contents of the input and output buses of the Boundary-Scan " &
 "register as an initial value. The Q outputs of the device " &
 "will be set to the value in the output bus. A new checksum" &505
 "is generated on each TCK in Run-Test/Idle state.')," &
 "PSAPRPG('Simultaneous 8-bit PSA on the D inputs and 8-bit PRPG on " &
 "the Q outputs.')";

Finally, a TDO or TDI/TDO symbol may be designated as the "default" TDO symbol. That
symbol will be displayed when no symbol's values directly match the bit pattern shifted out.510

attribute SYMBOL_DEFAULT of BIT_RESULTS : constant is "BIT_FAILED";

Revision A HSDL Syntax Specification

PRELIMINARY 14 31-Aug-1992

2.2.11. Register Access
Unchanged from BSDL. See attribute REGISTER_ACCESS (BSDL) in the HP Boundary-
Scan Tutorial and BSDL Reference Guide. The REGISTER_ACCESS attribute is
mandatory.515

2.2.12. Optional Register Information
HSDL provides the ability to define several additional types of information about the test
registers in a device. Test register concatenation, symbol tables, descriptions, Capture-DR
values, Test-Logic-Reset values, and privacy can all be described. The new attributes can
occur in any order following the REGISTER_ACCESS attribute.520

A major deficiency of BSDL from a data-integrity viewpoint is its inability to describe
concatenated test registers. This hardware construct, where a third test register is formed
from two other test registers (for example), is allowed by IEEE Std 1149.1-1990. However,
in BSDL the third test register must be described as a completely separate register, sharing
no hardware whatsoever. Conflicts can arise between what the test controller believes is525
currently in the hardware and what the hardware believes is currently in the hardware.

attribute REGISTER_COMPOSITION of My_IC : entity is
-- reg (reg, reg[bit], reg[bit,bit], ...)
 "BCR (REPS[1], REPS[3])," &
 "EMUL (REPS[5,12])";530

Each test register may have a symbol table associated with it, providing a set of symbols
that can be shifted into the test register and used to represent values shifted out of the test
register.

attribute REGISTER_SYMBOLS of My_IC : entity is
-- reg (symbol_table)535
 "BCR (BCR_SYMBOLS)," &
 "EMUL (EMUL_SYMBOLS)";

Each test register can have a description associated with it.
attribute REGISTER_DESCRIPTION of ttl74bct8374 : entity is
-- reg (description)540
 "BOUNDARY ('The Boundary-Scan register contains the cells attached " &
 "to the pins of the device.')," &
 "BYPASS ('The BYPASS register is a one-bit register that always " &
 "loads a 0 in the Capture-DR state. It is used to speed " &
 "up scanning to the UUT when a device is not used during " &545
 "a test.')," &
 "BCR ('The Boundary Control Register is a design-specific " &
 "test data register used to specify the test operation - " &
 "PSA, PRPG - that will be performed by the RUNT " &
 "instruction.')";550

If the values captured by a test register in the Capture-DR state can be considered status
values, they can be placed in the REGISTER_CAPTURE attribute. Good and bad status
values can be identified, along with a description of the value. The description may be
displayed for the operator to better understand the cause of success or failure.

attribute REGISTER_CAPTURE of ttl74bct8374 : entity is555
-- reg (capturevalue, pass/fail, description)
 "BYPASS (0, pass, 'The BYPASS register is working correctly.')," &
 "EMUL (OKON, pass, 'The Emulation logic is working correctly; " &
 "emulation is enabled.')," &
 "EMUL (OKOFF, pass, 'The Emulation logic is working correctly; " &560
 "emulation is disabled.')," &
 "EMUL (ERROR, fail, 'The Emulation logic is not working.')";

Revision A HSDL Syntax Specification

PRELIMINARY 15 31-Aug-1992

If a test register loads a constant value during Test-Logic-Reset, that value can be listed in
the REGISTER_RESET attribute. This is a data integrity feature of HSDL.

attribute REGISTER_RESET of ttl74bct8374 : entity is565
-- reg (resetvalue)
 "INSTRUCTION (BYPASS)," &
 "BCR (PSA)";

2.2.13. Boundary Register Description
Unchanged from BSDL. See attribute BOUNDARY_CELLS (BSDL), BOUNDARY_LENGTH570
(BSDL), and BOUNDARY_REGISTER (BSDL) in the HP Boundary-Scan Tutorial and BSDL
Reference Guide. These statements are mandatory and must appear in the order they are
listed here.

2.2.14. Optional Boundary Register Symbol(s)
The optional HSDL BOUNDARY_SYMBOLS attribute may appear following all BSDL575
boundary register statements. The BOUNDARY_SYMBOLS attribute is used to associate
symbol tables with certain types of cells attached to ports of the device. For example, a cell
on a control pin could have a symbol table associated with it that defined ENABLE and
DISABLE values.

attribute BOUNDARY_SYMBOLS of ttl74bct8374 : entity is580
 "CLK (input, clk_symbols)," &
 "OC_NEG (input, oc_symbols)";

2.2.15. Optional Bus Description(s)
The optional HSDL bus descriptions define buses, logical groupings of subsets of bits from
one or more test registers or buses. The most common use for buses in a device is to define585
the fields contained within various test registers. For example, the IdCode Register consists
of version number, part number, and manufacturer fields. Each of these test register
subsets could be described using a bus.

attribute BUS_COMPOSITION of My_IC : entity is
 "version[4] (idcode[31,28])," &590
 "part_number[16] (idcode[27,12])," &
 "manufacturer[11] (idcode[11, 1])";

attribute BUS_COMPOSITION of ttl74bct8374 : entity is
-- bus[length] (reg, reg[bit], reg[bit,bit], ...)
 "inputs[8] (BOUNDARY[8,15])," &595
 "outputs[8] (BOUNDARY[0, 7])," &
 "aux[2] (BOUNDARY[16,17])," &
 "lfsr[16] (BOUNDARY[0,15])";

A bus may have a symbol table associated with it. Again using the IdCode Register as an
example, the manufacturer field could have a large number of symbols associated with it,600
describing the manufacturers.

attribute BUS_SYMBOLS of My_IC : entity is
 "manufacturer (List_Of_Manufacturers)";

attribute BUS_SYMBOLS of ttl74bct8374 : entity is
-- bus (symbol_table)605
 "aux (AUX_SYMBOLS)";

Revision A HSDL Syntax Specification

PRELIMINARY 16 31-Aug-1992

Each bus in the design can optionally have a description associated with it.
attribute BUS_DESCRIPTION of My_IC : entity is
 "version ('The version number of the device.')," &
 "part_number ('The part number of the device.'), " &610
 "manufacturer ('The manufacturer''s JEDEC code.')";

attribute BUS_DESCRIPTION of ttl74bct8374 : entity is
-- bus (description)
 "inputs ('The eight cells of the Boundary-Scan register " &
 "that are connected to the D inputs are combined " &615
 "to form the input bus.')," &
 "outputs ('The eight cells of the Boundary-Scan register " &
 "that are connected to the Q outputs are " &
 "combined to form the output bus.')," &
 "aux ('The two cells of the Boundary-Scan register " &620
 "that are connected to the CLK and OC_NEG pins " &
 "are combined to form the aux bus.')," &
 "lfsr ('A bus used by the bcr.')";

2.2.16. Optional Constraint Description(s)
The design of hardware inevitably involves some constraints, illegal conditions that cannot625
be established without unpredictable or damaging results. Constraints consist of logical and
relational expressions that are evaluated before each scan operation. If any of the
constraints are TRUE, an illegal condition has been created and no scanning can be
performed until the constraint is FALSE.

attribute CONSTRAINTS of My_IC : entity is630
-- constraint (expression)
 "shared_cells (BCR = SAMTOG and EMUL = STEP)," &
 "bad_device (BYPASS = 1)";

Constraints may also have a description associated with them. The description may be
displayed by the test controller when the constraint has been violated to aid the operator in635
correcting the problem.

attribute CONSTRAINT_DESCRIPTION of My_IC : entity is
-- constraint (description)
 "shared_cells ('Physical cells are shared by the Boundary Control " &
 "Register and the EMUL emulation register.')," &640
 "bad_device ('The device fails if BYPASS is a 1 (not true)!')";

2.2.17. Optional Design Warning
Unchanged from BSDL. The DESIGN_WARNING attribute is not discussed in the BSDL
Syntax chapter of the HP Boundary-Scan Tutorial and BSDL Reference Guide, but is
described in the Introduction to BSDL chapter under the section Miscellaneous Declarations.645
This statement is optional.

2.3. The Entity Description for a Module
A module is defined as a collection of devices and other modules whose TAP ports are
connected to define a scan path. Since modules can contain other modules as members, a
hierarchy is formed (hence the name Hierarchical Scan Description Language). The simplest650
module represents a board containing one or more devices connected into a single scan path.
More complicated modules can represent multi-chip modules, backplanes, boxes, subsystems,
or entire systems.

A module entity in HSDL uses much of the same syntax as a device entity. New statements
have been added to list the device and module entities mounted on the module entity and to655
describe how these member entities are interconnected. Existing BSDL statements have been
removed where they did not apply to the description of modules.

A module does not have to directly represent a physical board, box, etc. A module entity can be
used to define any collection of members that is convenient. Usually, the most convenient

Revision A HSDL Syntax Specification

PRELIMINARY 17 31-Aug-1992

module entity is one that corresponds directly to a real board, but occasionally other divisions660
may be useful.

Modules and devices have many similiarities. Both have ports, different packaging options, Test
Access Port(s), symbol tables, buses, and constraints. The main differences are that a device
consists of test registers connected in a certain way and controlled by instructions, whereas a
module consists of member devices and modules connected in a certain way and controlled by665
scan paths.

entity My_Board is -- an entity for my board

Generic Parameter

Logical Port Description

Use Statement(s) *670

[Optional Module Descriptions] *

[Optional Port Description(s)] *

Package Pin Mapping

Scan Port Identification

[Optional Member Description(s)] *675

[Optional Symbol Table Description(s)] *

[Optional Bus Description(s)] *

Path Description(s) *

[Optional External Path Declaration(s)] *

Static Path Declaration(s) *680

[Optional Dynamic Path Declaration(s)] *

[Optional Member Connections] *

[Optional Constraint Description(s)] *

[Optional Design Warning] **

end My_Board;685

An asterisk (*) designates areas of HSDL that are new or that were enhanced from BSDL. Two
asterisks (**) designate areas of HSDL that are BSDL but that were not completely discussed in
the HP Boundary-Scan Tutorial and BSDL Reference Guide.

In a sense, all the statements of a module entity are new, because BSDL could not describe
modules. However, the syntax and meaning of many of the statements is the same. For this690
reason, an HSDL module entity cannot be converted into BSDL, because no equivalent BSDL
exists.

The order of elements shown above is a required standard practice in order to simplify non-
VHDL applications, like BSDL or HSDL translators. Each element of the entity is examined and
discussed in the subsections that follow.695

2.3.1. Generic Parameter
Unchanged from BSDL. See generic (BSDL) in the HP Boundary-Scan Tutorial and BSDL
Reference Guide. The generic parameter is mandatory.

Revision A HSDL Syntax Specification

PRELIMINARY 18 31-Aug-1992

2.3.2. Logical Port Description
Unchanged from BSDL. See port (BSDL) in the HP Boundary-Scan Tutorial and BSDL700
Reference Guide. The port statement is mandatory.

2.3.3. Use Statement(s)
The use statement is primarily unchanged from BSDL. See use (BSDL) in the HP
Boundary-Scan Tutorial and BSDL Reference Guide. The statement use
STD_1149_1_1990.all; is mandatory and must appear first, followed by the HSDL module705
package.

HSDL modules cannot use user-defined packages. These packages only contain cell
definitions for the boundary register, and a module does not have a boundary register.

A new package has been defined for HSDL module entities that declares all attributes and
subtypes used by a module entity. In addition, it identifies the entity as an HSDL module.710
The new package is HSDL_module, as shown in this example.

use HSDL_module.all; -- identifies the entity as an HSDL module

2.3.4. Optional Module Description
This optional statement describes the module. It appears primarily for documentation
purposes. Ideally, it should describe the functionality of the module in sufficient detail to715
help the test engineer or operator understand the function, purpose, and usage of the
module. As a description, it may be displayed by interactive tools or by the test controller
itself as a description of the module under test.

attribute MODULE_DESCRIPTION of gdm: entity is
 "The General Demonstration Module (GDM) is an example board that was " &720
 "designed to demonstrate some of the capabilities of an 1149.1 UUT.";

2.3.5. Optional Port Description(s)
Same as the HSDL device entity.

2.3.6. Package Pin Mapping
Unchanged from BSDL. See attribute PIN_MAP (BSDL) and constant-(entity) (BSDL) in the725
HP Boundary-Scan Tutorial and BSDL Reference Guide. The PIN_MAP attribute is
mandatory and must appear first, followed by one or more PIN_MAP_STRING constants.

2.3.7. Scan Port Identification
Syntax is unchanged from BSDL. See attribute TAP_SCAN_CLOCK (BSDL), attribute
TAP_SCAN_IN (BSDL), attribute TAP_SCAN_MODE (BSDL), attribute TAP_SCAN_OUT730
(BSDL), and attribute TAP_SCAN_RESET (BSDL) in the HP Boundary-Scan Tutorial and
BSDL Reference Guide. The statements may appear in any order. All but the
TAP_SCAN_RESET attribute are required.

IEEE Std 1149.1-1990 compliant devices have a single Test Access Port (TAP). Modules,
however, can have many TAPs and many scan paths. Two different scan paths may735
actually share some of the ports of their TAPs.

The TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK, TAP_SCAN_MODE, and
TAP_SCAN_RESET attributes must be used to identify every port that can be connected to
a member device or module. The 1149.1 standard itself shows some examples of boards
with multiple TMS or multiple TDI/TDO signals.740

A TAP_SCAN_IN port must be an in port. Likewise, a TAP_SCAN_OUT port must be an
out port. The TAP control lines (TAP_SCAN_CLOCK, TAP_SCAN_MODE,
TAP_SCAN_RESET) can be all in ports, all out ports, or all inout ports, depending on the

Revision A HSDL Syntax Specification

PRELIMINARY 19 31-Aug-1992

hardware design. If the connector these ports reside on is designed only to allow a
scannable UUT to be plugged in to the connector, it is a pure unit-under-test connector, and745
the ports are all out. If the connector these ports reside on is designed only to allow a test
controller to be plugged in to the connector, it is a pure test connector, and the ports are all
in (like BSDL device entities). If the connector is designed to allow either a scannable UUT
or a test controller to be plugged in, it may be a test connector or a unit-under-test connector,
and the ports are all inout. In this way, there is no "magic" connector on the module that the750
test controller must always be plugged into.

The TAP_SCAN_CLOCK frequency specifies the maximum TCK operating frequency of the
module itself, not including the devices mounted on the module. The module's physical
design may have frequency limitations that place its maximum operating frequency far below
that of the member devices and member modules mounted on the module. A member755
device or member module may likewise have a lower maximum operating frequency than
the module it is mounted on. The test controller must use the lowest of all
TAP_SCAN_CLOCK frequencies to accurately determine the maximum TCK frequency
used to test the UUT.

Consider the following example board with five different TAPs:760
-- Scan Port Identification
attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_RESET of TRST : signal is true;765
attribute TAP_SCAN_CLOCK of LCLK : signal is (20.0e6, BOTH);

attribute TAP_SCAN_IN of J2_TDO : signal is true;
attribute TAP_SCAN_MODE of J2_TMS : signal is true;
attribute TAP_SCAN_OUT of J2_TDI : signal is true;770
attribute TAP_SCAN_CLOCK of J2_TCK : signal is (20.0e6, BOTH);

attribute TAP_SCAN_IN of J3_TDO : signal is true;
attribute TAP_SCAN_MODE of J3_TMS : signal is true;
attribute TAP_SCAN_OUT of J3_TDI : signal is true;775
attribute TAP_SCAN_CLOCK of J3_TCK : signal is (20.0e6, BOTH);

attribute TAP_SCAN_IN of J4_TDO : signal is true;
attribute TAP_SCAN_MODE of J4_TMS : signal is true;
attribute TAP_SCAN_OUT of J4_TDI : signal is true;780
attribute TAP_SCAN_CLOCK of J4_TCK : signal is (20.0e6, BOTH);

attribute TAP_SCAN_IN of J5_TDO : signal is true;
attribute TAP_SCAN_MODE of J5_TMS : signal is true;
attribute TAP_SCAN_OUT of J5_TDI : signal is true;785
attribute TAP_SCAN_CLOCK of J5_TCK : signal is (20.0e6, BOTH);

2.3.8. Optional Member Description(s)
Next come the declarations of all the members of the module. Members represent devices
or other modules that are "mounted" on the module. Usually members represent
components, but some boards may contain scannable daughterboards, card slots, etc. that790
require member modules to describe them.

A member declaration names all the parts mounted on the module, selecting an entity and a
packaging option for each. The MEMBERS attribute does not indicate whether the member
is a device or a module - it does not matter, and can be determined by the HSDL translator
after reading the member's entity.795

attribute MEMBERS of gdm : entity is
 "u19 (ttl74bct8244, NT_PACKAGE)," &
 "u21 (ttl74bct8244, NT_PACKAGE)," &
 "u9 (ttl74bct8244, NT_PACKAGE)," &
 "u8 (ttl74bct8244, NT_PACKAGE)," &800
 "u1 (ttl74bct8244, NT_PACKAGE)," &
 "u22 (ttl74bct8373, NT_PACKAGE)," &
 "u20 (cf93279, FK_PACKAGE)";

Revision A HSDL Syntax Specification

PRELIMINARY 20 31-Aug-1992

Each member can have a description associated with it. The difference between a member
description and a device or module description is that a device or module description805
describes the particular type of device or module, whereas a member description describes
the particular usage of the member within the module. For example, a device description
may indicate that a device is a buffer, but a member description will indicate that the buffer
is used to buffer signals being fed to a backplane bus.

 attribute MEMBER_DESCRIPTION of PC : entity is810
 "u1 ('CPU.')," &
 "u2 ('The SPL is used to isolate motherboard RAM and the 32-bit slot " &
 "from the rest of the test logic to improve failure analysis.')," &
 "u3 ('Data bus between i486 and memory, lines d0-d7.')," &
 "u4 ('Data bus between i486 and memory, lines d8-d15.')," &815
 "u5 ('Data bus between i486 and memory, lines d16-d23.')," &
 "u6 ('Data bus between i486 and memory, lines d24-d32.')," &
 "u7 ('Chipset override control logic.')," &
 "u8 ('Hard disk controller override logic.')," &
 "u9 ('DSP used to oversee multimedia functions.')," &820
 "u10 ('Keyboard override control logic.')" ;

2.3.9. Optional Symbol Table Description(s)
Same as the HSDL device entity.

2.3.10. Optional Bus Description(s)
Same as the HSDL device entity. Buses in an HSDL module can be built of module buses,825
member module buses, member device buses, and member device test registers.

2.3.11. Path Descriptions
Module paths can be a confusing subject. Module paths are intended to describe the netlist
of TAP signals (scan paths) on the board. Some introduction is in order.

The simplest module to discuss consists of one member device wired to a connector.830

U1
TDI TDO
TCK TMS

TDI TDOTCK TMS

TRST

TRST

The connector has the five TAP signals (TAP_SCAN_IN, TAP_SCAN_OUT,
TAP_SCAN_CLOCK, TAP_SCAN_MODE, and TAP_SCAN_RESET) each wired
appropriately to the member device. What are the important characteristics of this module?

The module contains one member, which can be defined in the MEMBERS attribute. But835
how is that member device controlled? A netlist of some sort needs to be constructed,
connecting the signals that can be fed to the board by the test controller to the TAP ports of
the device. A simple netlist just for the scan path can expand far beyond the desire of any
engineer to type it in. Just the connections of TDI to TDO result in the creation of many
nets.840

To avoid introducing a netlist concept into module entities, scan paths were created. Each
path is controlled or controls one set of TAP signals (TAP_SCAN_IN, TAP_SCAN_OUT,
TAP_SCAN_CLOCK, TAP_SCAN_MODE, and optionally TAP_SCAN_RESET). Objects
listed in the path are all connected. The TAP control signals of each object
(TAP_SCAN_CLOCK, TAP_SCAN_MODE, and optionally TAP_SCAN_RESET) are all845

Revision A HSDL Syntax Specification

PRELIMINARY 21 31-Aug-1992

wired together. The TAP_SCAN_IN of each object is wired to the TAP_SCAN_OUT of the
next object.

To represent the simple board described earlier using this scheme, all that is required is to
indicate that the connector and the device are in the same scan path, and that the connector
has certain scan ports on it.850

A connector of any type, where TDO leaves the module and TDI returns without a
connection between, is an external path. Each external path of the module consists of a set
of four or five TAP signals (TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK,
TAP_SCAN_MODE, and optionally TAP_SCAN_RESET). External paths can be used to
represent any place where the scan path leaves the module. Examples of external paths:855
test controller interfaces, scannable card slots, scannable connectors, scannable
daughterboard pins, and scannable device sockets. External paths and physical module
connectors do not always have a one-to-one correspondence. The physical connector may
have more than one instance of each TAP signal. In a sense, an external path represents a
sort of "board-level Test Access Port", where the four or five TAP signals are received by or860
driven from the board. Every device has one external path: its TAP port.

Shown here are three examples of physical items found on a typical unit under test that are
represented using external paths. The example on the left is a scannable card slot. The
example on the upper right is a scannable chip socket. The example on the lower right is the
connector used to plug the test controller into the UUT.865

Plug-in
Scannable
Card

(External Path)
Scannable Backplane Slot

Test Controller

Test Connector
(External Path)

Connector to

Scannable IC

Chip Socket
(External Path)

A serial TDI-to-TDO connection of member devices, member modules, and paths that all
share the same TAP control signals is a static path. A static path represents a simple wiring-

Revision A HSDL Syntax Specification

PRELIMINARY 22 31-Aug-1992

together of members and connectors. An interesting but important fact to observe is that the870
static path forms a circle of TDI-to-TDO connections. Some of the items in the circle are
external paths where the test controller can be plugged in. For the simple board described
earlier, the static path consists of one external path and one member device.

The previous example showing the simplest module is an example of a static path containing
one member device and one external path. Shown here is an example of the physical items875
found on a typical unit under test that are represented using static paths. The example
shows some devices (members), a daughterboard (member module), a test connector
(external path), a scannable card slot (external path), and a block of logic labelled dynamic
path. Only the five devices marked with an asterisk are member devices. The two devices
shown on the daughterboard are members of the daughterboard module.880

(External Path)
Scannable Card Slot

Test Connector
(External Path)

Daughterboard (Member Module)

Scan Path of
Daughterboard

Dynamic
Path

Scannable IC's
(Member Devices)

*

*
*

*
*

*

Static Path of the Module

Note: Thick lines denote static paths.

A third type of path represents a limited form of ad-hoc scan path multiplexing. A dynamic
path is a set of controlled paths that may be attached to the TMS signal of the path or have
their TMS lines forced high or low. A dynamic path does not actually control the scan path885
multiplexing; the UUT hardware and the test software must coordinate their activities to
change the configuration of the dynamic path. The state of a dynamic path simply
represents the state of the hardware, and changing the dynamic path does not change the
hardware.

Shown here is an example of physical items found on a typical unit under test that are890
represented using dynamic paths. The example shows a portion of a memory board where
the amount of memory on the board can be expanded. Scannable buffers are used to add
testability to the memory. The expandability is provided by two sockets for the memory and
two sockets for the corresponding buffers. (The pictures of the two buffer sockets contain
asterisks.) Since the buffers may or may not be present, the scan path must be routed895
around the buffers when they are absent to keep the scan path intact. The jumper used to
perform this function controls a dynamic path. Case 1 of the dynamic path, when the buffers
are installed, scans through two buffer sockets (external paths), while the case 2, when the
buffers are absent, scans through a wire (empty static path). The area of the memory board
represented as a dynamic path is shown with a light-colored background pattern.900

Revision A HSDL Syntax Specification

PRELIMINARY 23 31-Aug-1992

Scannable Buffer IC (Member Device)

Memory IC

Socket for Additional
Memory IC

Jumper for Altering
Scan Path
(Dynamic Path)

Socket for Additional Scannable Buffer IC (External Path)

Scan Path for Memory Module (Static Path)

*

*

*

Case 1 (Buffers)

Case 2 (Wire)

= Dynamic Path

Using these three types of paths, how is the netlist of TAP signals represented? Each path
consists of a set of four or five TAP signals. When an external path is defined, a set of four
or five TAP ports of the module must be associated with the external path. These ports
represent physical pins on the module connector. When a static path is defined, at least one905
external path is (eventually) included in the static path. This implicitly connects the TAP
signals of the scan path to the TAP ports of the external path. Static paths or dynamic paths
that do not have an external path in them must be included inside another static path or
dynamic path, and eventually all paths of any type are tied in to a master static path for the
module that does have external paths. In this way, all TDI-to-TDO nets are identified, and all910
TMS signals, all TCK signals , and all optional TRST signals of the external paths are tied
together to form three nets (one for TMS, one for TCK, and one for TRST).

Another way of thinking about paths is that each item in a module has its own TAP. For an
external path, the TAP is defined by the ports attached to the external path. Static and
dynamic paths have a TAP. Devices have TAPs, and member modules (by virtue of their915
external paths) also have TAPs. Listing an item in a path connects the TAP of the path to
the TAP of the item, building a netlist.

In the simple case described earlier (a board with one device and one test connector), many
simplifications can be made. An external path is not needed to describe this board, because
only one set of TAP signals exists for the board. Thus, only one path statement is needed, a920
static path listing the single device on the board. The connection of the TAP signals to the
static path and the creation of an external path for the board are all implied and do not need
to be stated explicitly in this case.

External paths, static paths, and dynamic paths form a hierarchy of paths. The lowest-level
subpaths are defined first and later included in the definitions of higher-level paths, until at925
last the primary scan paths of the module are defined, incorporating all lower-level paths.

Revision A HSDL Syntax Specification

PRELIMINARY 24 31-Aug-1992

The example module HSDL entities shown later in this document should make the netlist
and path concepts clearer.

Another statement related to external paths, the member connection, is used to attach
members or paths to the external paths of a member module or device. For example, a930
backplane module has several external paths. When that backplane module is included as a
member in a higher-level, system module, the system module must plug items into the
external paths of the backplane member. All the external paths of the backplane except
one must have something plugged in to them. The one remaining external path is where the
backplane module is connected to the system module, usually in a static path.935

The declarations for external paths, static paths, and dynamic paths may be listed in any
order necessary to describe the module. Modules may be built containing more than one
primary scan path. If any members contain unresolved external paths, the member
connections must be listed following all path declarations.

An example of a module that cannot be described using HSDL is shown here.940

U1 U2

TDI TDO

TCK1 TMS1 TCK2 TMS2

In this module, the connection of devices does not correspond to the HSDL definition of a
scan path; that is, serially connected members or paths sharing the same set of TAP
control signals. These devices are serially connected, but they are connected to different
TAP_SCAN_CLOCK and TAP_SCAN_MODE ports.945

2.3.12. Optional External Path Declaration(s)
External paths usually represent external connectors that contain a set of TAP signals, one
each of TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK, TAP_SCAN_MODE, and
optionally TAP_SCAN_RESET ports. An external path is given a name so that it can be
referenced by other path declarations.950

Revision A HSDL Syntax Specification

PRELIMINARY 25 31-Aug-1992

External paths are declared with a constant, and list the TAP ports associated with the
external path.

port (LCLK : inout bit;
 UUTCLK : out bit;955
 TMSR : in bit;
 GND : linkage bit_vector (1 to 7);
 EVT0 : linkage bit;
 TDI : in bit;
 TDO : out bit;960
 TMS, TRST : inout bit;

 -- ram32 slot connectors
 J2_TCK, J2_TMS : inout bit;
 J2_TDI : out bit;965
 J2_TDO : in bit;
 J2_DATABUS : inout bit_vector (31 downto 0);
 J2_ADDRBUS : out bit_vector (23 downto 0);
 J2_RW : out bit;

.970

.

.
-- Scan Port Identification
attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;975
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_RESET of TRST : signal is true;
attribute TAP_SCAN_CLOCK of LCLK : signal is (20.0e6, BOTH);

attribute TAP_SCAN_IN of J2_TDO : signal is true;980
attribute TAP_SCAN_MODE of J2_TMS : signal is true;
attribute TAP_SCAN_OUT of J2_TDI : signal is true;
attribute TAP_SCAN_CLOCK of J2_TCK : signal is (20.0e6, BOTH);

.

.985

.
constant J1 : EXTERNAL_PATH := "TDI, TDO, TMS, LCLK, TRST";
constant J2 : EXTERNAL_PATH := "J2_TDI, J2_TDO, J2_TMS, J2_TCK";

In the example above, two external paths are shown. Both external paths use ports that are
defined such that either a test controller or a scannable module or device could be plugged990
into them.

Note that if a board contains only one set of TAP signals, no external path need be defined.
Its existence can be assumed.

A module must contain at least one external path where the TAP_SCAN_CLOCK,
TAP_SCAN_MODE, and optional TAP_SCAN_RESET ports are either in or inout.995
Otherwise, no test connector would exist on the module for plugging in the test controller.

An optional PATH_DESCRIPTION statement can be given for each external path. The
purpose and function of the external path should be described in sufficient detail so that the
operator can understand what the external path represents.

attribute PATH_DESCRIPTION of J1 : constant is1000
 "J1 is the scan test connector for this board.";

2.3.13. Static Path Declaration(s)
Static paths define known, fixed, serially-connected member devices, member modules, or
other paths. The items listed in the static path are connected serially, with the TDO of one
item connected to the TDI of the item on its right. The TAP control signals1005
(TAP_SCAN_CLOCK, TAP_SCAN_MODE, and optional TAP_SCAN_RESET) of all items
listed are interconnected: all clocks on one net, all mode selects on another net, and all
resets on a third net.

Revision A HSDL Syntax Specification

PRELIMINARY 26 31-Aug-1992

constant subpath1 : STATIC_PATH := "u3, u4, u5, u6";
constant short : STATIC_PATH := "";1010
 -- subpath2 is equivalent to "u19, u3, u4, u5, u6, u18"
constant subpath2 : STATIC_PATH := "u19, subpath1, u18";
constant boardpath : STATIC_PATH := "J1, u1, u2, u7, J3, J4, J5, u8, dpath, u10";

The examples above show three static paths. Subpath1 is a simple static path consisting of
four serially connected devices. Short is an empty static path, which simply shorts TDI to1015
TDO. A short can be useful for "closing" external paths and for creating empty
configurations of a dynamic path. Boardpath is a static path containing devices (beginning
with "u"), external paths (beginning with "J"), and a dynamic path (beginning with "d").

Static paths are "circular" in the sense that the TDI of the first item in the static path is
implicitly connected to the TDO of the last item in the static path. When a static path is1020
listed as an item in a new path, the TDI of the first item in the first static path is connected to
the TDO of the preceding item in the new path, and the TDO of the last item in the first static
path is connected to the TDI of the following item in the new path. Conceptually, each static
path has a TAP, and when one is listed in another, their TAPs are connected.

In the example shown here, boardpath is intended to be the primary scan path of the1025
module. The presence of external paths in this static path is a clue. If boardpath is not
included in any other path, it is (one of) the primary scan path(s) of the module.

An optional PATH_DESCRIPTION statement can be given for each static path. The
purpose and function of the static path should be described in sufficient detail so that the
operator can understand what portion of the unit under test is covered by the static path.1030

attribute PATH_DESCRIPTION of short : constant is
 "Short is an empty static path, representing a wire between TDI and TDO.";

2.3.14. Optional Dynamic Path Declaration(s)
A dynamic path describes a limited form of ad-hoc scan path multiplexing. A fixed set of
items (paths or members) may be multiplexed. A dynamic path has one or more1035
configurations, where each configuration selects one of the items from the set to be placed
in the scan path (connected to the TAP_SCAN_MODE signal), and the other items are either
in Test-Logic-Reset or Run-Test/Idle state.

constant dpath : DYNAMIC_PATH :=
 "0 (u9:dpath, short:1)," &1040
 "1 (u9:1, short:dpath) " ;

In this example, the dynamic path named dpath has two different configurations, or dynamic
path cases. Each configuration indicates that one of the two items is connected to the TMS
signal of the scan path and the other item is placed in Test-Logic-Reset. Case 0 connects
the TAP_SCAN_MODE signal of member device u9 to the TAP_SCAN_MODE signal of the1045
dynamic path, and the TAP_SCAN_MODE signal of the static path short to a fixed high (1),
forcing it to Test-Logic-Reset. Case 1 connects the u9's TAP_SCAN_MODE signal to a
fixed high (1) and short's TAP_SCAN_MODE signal to the dynamic path's
TAP_SCAN_MODE signal.

Items in a dynamic path case that are not connected to TMS are assumed to be built so that1050
their TDI/TDO ports are multiplexed out of the serial TDI-to-TDO chain, so that shifting
operations do not involve them.

It is undefined whether the operation of multiplexing an item out of the dynamic path stops
the test clock for that item or allows it to continue running. HSDL translators must assume
that the test clock is stopped (this is the worst-case assumption). It is also undefined1055
whether an item is placed in Test-Logic-Reset by manipulating its TAP controller state
(pulling TMS high and clocking TCK five cycles) or by pulling TRST low. In other words, the
actions of the item described by the dynamic path may not exactly describe what the
hardware is doing. The only requirement is that the condition of the test controller's software

Revision A HSDL Syntax Specification

PRELIMINARY 27 31-Aug-1992

model of the item described by the dynamic path matches the condition of the hardware1060
when it is multiplexed back into the scan path.

An optional PATH_DESCRIPTION statement can be given for each dynamic path. The
purpose and function of the dynamic path should be described in sufficient detail so that the
operator can understand what the dynamic path models and what it is used for.

attribute PATH_DESCRIPTION of dpath : constant is1065
 "The dynamic path dpath is used to remove the C40 from " &
 "the scan path if the device is not mounted on the board.";

2.3.15. Optional Member Connections
A requirement of HSDL is that all external paths of a member be connected to something,
except the one external path that is used to control the member. What does this1070
requirement mean, and why is there one exception?

Consider a backplane module intended for incorporation into a computer module. The
backplane has one test connector (an external path) and multiple card slots (also external
paths). The computer module declares the backplane module as a member. To plug the
backplane module into one of the scan paths of the computer module, HSDL must know1075
which one to use. How can this be determined? One of the external paths of the backplane
member is listed in a static path or dynamic path, and the other external paths must have
something plugged into them with the CONNECTIONS attribute.

A secondary reason for forcing all external paths to have something plugged in to them is
that the test controller will only have to check the highest-level entity of the UUT for1080
unresolved external paths when the UUT's entity is loaded by the test controller. If the user
accidentally forgot to plug something into an external path five levels deep in the hierarchy,
it could be weeks before the error is caught. To improve error detection in HSDL, all
members with external paths must have those external paths resolved.

Sometimes it is desirable to leave external paths empty so that something may be plugged1085
into them in a higher-level entity. To do this, a new external path is defined in the current
entity and plugged in to the member's external path. This extra effort may be tedious but
can avoid many errors and much complication of the test controller.

To plug items into member external paths, the CONNECTIONS attribute is used. The
CONNECTIONS attribute must appear following all path declarations only if any member1090
devices or member modules contain unresolved external paths.

attribute CONNECTIONS of fiction : entity is
 "u2 (ssp1:subpath1, ssp2:j2, ssp3:*, ssp4:*)";

In this example, the member named u2 has five external paths (remember that one of these
external paths is not shown). Member u2's external path ssp1 has a static path named1095
subpath1 attached to it. Member external path ssp2 has another external path connected to
it named j2. External paths ssp3 and ssp4 are permanently not connected to anything
(permanently open).

Normally this is illegal (it creates a permanent open in the scan path), but u2 happens to be a
TI Scan Path Linker, SN74ACT8997. This device has four external paths that are under the1100
control of dynamic paths, and these external paths can be multiplexed out of the scan path.
Leaving the external paths permanently open implies that the test controller must forbid the
operator from using certain configurations of the dynamic paths in the device.

2.3.16. Path Requirements
This section defines the rules that must be followed when combining EXTERNAL_PATH1105
constants, STATIC_PATH constants, DYNAMIC_PATH constants, and the CONNECTIONS
attribute to completely describe all scan paths of the unit under test.

Revision A HSDL Syntax Specification

PRELIMINARY 28 31-Aug-1992

A primary scan path represents a complete TDI-to-TDO connection from a TDI input of the
module to a TDO output of the module. It includes all member devices, member modules,
external paths, static paths, and dynamic paths that make up the primary scan path. All1110
modules have at least one primary scan path, but may have more. The ultimate purpose of
defining external, static and dynamic paths is to define the primary scan paths of the
module.

Primary Path of the Module

Module Containing One Primary Path

Another Primary Path of the Module

Module Containing Two Primary PathsOne Primary Path
of the Module

1115
A test connector is an external path whose TAP_SCAN_CLOCK, TAP_SCAN_MODE, and, if
present, TAP_SCAN_RESET ports all have mode IN or mode INOUT. Such an external
path may be controlled by a test controller. A unit-under-test connector is an external path
whose TAP_SCAN_CLOCK, TAP_SCAN_MODE, and, if present, TAP_SCAN_RESET ports
all have mode INOUT or mode OUT. Such an external path may drive a unit-under-test.1120
Every module must define at least one test connector. An external path whose
TAP_SCAN_CLOCK, TAP_SCAN_MODE, and, if present, TAP_SCAN_RESET ports all
have mode IN is a pure test connector, all have mode INOUT may be a test connector or a
unit-under-test connector, or all have mode OUT is a pure unit-under-test connector. The
selected test connector is the test connector that the test controller is connected to for the1125
duration of the test.

Revision A HSDL Syntax Specification

PRELIMINARY 29 31-Aug-1992

Unit-Under-Test Connector (External Path)

Test Connector
(External Path)

Could be a test
connector or a
unit-under-test
connector given
an appropriate
design.

Test Controller
Connector to

This connector is also the
selected test connector.

It is a pure test connector if the
design only allows the connector
to function as an input for TMS,
TCK, and TRST.

It is a pure UUT connector if the
design only allows the connector
to function as an output for TMS,
TCK, and TRST.

If a module has exactly one each of TAP_SCAN_IN, TAP_SCAN_OUT,
TAP_SCAN_CLOCK, and TAP_SCAN_MODE ports, with an optional TAP_SCAN_RESET
port, then the TAP_SCAN_CLOCK, TAP_SCAN_MODE, and TAP_SCAN_RESET ports1130
must all have mode IN or mode INOUT. In this case, the module has only one test
connector and no other external paths, so only one primary path is allowed, the external path
declaration for the test connector may be omitted, and the test connector may be omitted
from the primary scan path. The HSDL translator automatically generates the test connector
by generating an external path named TAP, connecting it to the TAP_SCAN_... ports, and1135
including it in the primary scan path. Every device also has a test connector named TAP.

A path entry is a static path, dynamic path, external path, member, or member external path
- in other words, something that can be listed in another static path or dynamic path
declaration. Every path entry in the module must be included in exactly one static path, or in
exactly one member external path connection, or in exactly one dynamic path, but not in any1140
combination thereof.

An exception is that a static path that is not included in another path defines a primary scan
path. Each primary scan path must include at least one test connector (unless it can be
assumed as stated previously). The test connector must be listed in the STATIC_PATH
constant that defines the primary scan path.1145

Each primary scan path may include at most one pure test connector. Each primary scan
path may also include any number of test connectors that are not pure test connectors and
any number of unit-under-test connectors. If a primary scan path contains a pure test
connector, it must always be used as the selected test connector.

When listing a member in a static path or dynamic path, the member external path must be1150
used to identify the member and the external path of the member that is being connected to
the static path or dynamic path. A member external path being connected to a static path or
dynamic path must designate a test connector. If the member contains a pure test
connector, that test connector must be connected to the static path or dynamic path. If the

Revision A HSDL Syntax Specification

PRELIMINARY 30 31-Aug-1992

member has only one test connector, the member name alone may be used, and the1155
member test connector is implicitly connected to the static path or dynamic path.

Each external path of a member is connected to one of the primary scan paths of the
member. More than one of these may be test connectors, but only one may be a pure test
connector. Exactly one external path per primary scan path of a member may be connected
to a static path or dynamic path. If two could be connected, a subpath would be created that1160
could not be controlled by a test controller.

All external paths of each member must be connected to a path entry. When a member has
more than one external path, the CONNECTIONS attribute must be used to connect the
member external paths that were not included in a static path or dynamic path. If used, the
CONNECTIONS attribute must follow all EXTERNAL_PATH, STATIC_PATH, and1165
DYNAMIC_PATH constants.

The maximum operating frequencies for all TAP_SCAN_CLOCK ports that are part of the
external paths in a primary path must be the same. The frequencies may be different for
external paths in different primary paths. The port's TAP_SCAN_CLOCK frequency is
interpreted as the maximum operating frequency of the primary path.1170

2.3.17. Optional Constraint Description(s)
Same as the HSDL device entity.

2.3.18. Optional Design Warning
Unchanged from BSDL. The DESIGN_WARNING attribute is not discussed in the BSDL
Syntax chapter of the HP Boundary-Scan Tutorial and BSDL Reference Guide, but is1175
described in the Introduction to BSDL chapter under the section Miscellaneous Declarations.
This statement is optional.

Revision A HSDL Syntax Specification

PRELIMINARY 31 31-Aug-1992

3. Using HSDL

This section describes how HSDL can be used to solve selected scan description problems.
Many HSDL statements are covered informally during the discussion.1180

3.1. Describing Architectures Above the Device Level
In HSDL, any level of scan architecture above the device level is called a module. To describe a
module, an HSDL module entity is created. Module entities begin just like device entities but
differ substantially after the use statements.

Begin the module with an entity statement, a generic statement, a port statement listing all the1185
module pins, and a use STD_1149_1_1990.all statement. This part of the module description is
exactly like the corresponding parts of the device description. Note that in a module, many more
pins (called ports in HSDL) may need to be listed depending on the complexity of the module.

entity gdm is
 -- Generic Parameter1190
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

 -- Logical Port Description
 port (LCLK : in bit;
 UUTCLK : out bit;1195
 TMSR : in bit;
 GND : linkage bit_vector (1 to 7);
 EVT0 : linkage bit;
 TDO : out bit;
 TMS, TDI, TRST : in bit);1200

 -- Use Statement
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions

Module entities contain the use HSDL_module.all statement after the statement use
STD_1149_1_1990.all to indicate that a module is being described. These are the only use1205
statements that are needed, and the only two that are allowed, in a module entity.

 use HSDL_module.all; -- Get HSDL extensions for modules

After the two use statements, define the different packages for the module. Most modules only
have one package type. Define the packages using the PIN_MAP attribute followed by
PIN_MAP_STRING constants, one for each package. Pin numbering can use identifiers like1210
J1_2 as well as numbers like 5. Identifiers are more common for boards that contain several
slots, sockets, connectors, etc.

 -- Package Pin Mapping
 attribute PIN_MAP of gdm : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=1215
 "LCLK: 1, UUTCLK: 2, TDI: 3, TDO: 4, TMS: 5, TMSR: 6, TRST: 7," &
 "EVT0: 8, GND: (9, 10, 11, 12, 13, 14, 15)";

Scan port identification appears next. Include the attributes TAP_SCAN_IN, TAP_SCAN_OUT,
TAP_SCAN_CLOCK, TAP_SCAN_MODE, and TAP_SCAN_RESET (if the module has any
TRST signals) for each 1149.1 signal on the module that can be accessed from a port on the1220
module. Again, most modules only have one TAP, so only one each of the TAP_SCAN_...
attributes is needed.

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;1225
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_RESET of TRST : signal is true;
 attribute TAP_SCAN_CLOCK of LCLK : signal is (20.0e6, BOTH);

At this point the module entity begins to look quite different from the device entity. Statements
in the device entity that described the instruction register, idcode and usercode registers,1230
instructions, user-defined test registers, and the boundary are not needed and make no sense for

Revision A HSDL Syntax Specification

PRELIMINARY 32 31-Aug-1992

a module entity. In their place, new statements describe the devices and modules contained in
this module and the order of these devices and modules in the scan path.

Include the MEMBERS attribute to list each of the devices and modules that are contained in the
module being described. Many modules contain only devices. Assign a different name to each1235
member, using the reference designator from the schematic as the name to avoid confusion.
The entity and package used for each member must also be defined. Look in the entity file for
each device and module used to decide which package pinout is used on the hardware and list
that package name in the MEMBERS attribute.

 -- Member Description1240
 attribute MEMBERS of gdm : entity is
 "u19 (ttl74bct8244, NT_PACKAGE)," &
 "u21 (ttl74bct8244, NT_PACKAGE)," &
 "u9 (ttl74bct8244, NT_PACKAGE)," &
 "u8 (ttl74bct8244, NT_PACKAGE)," &1245
 "u1 (ttl74bct8244, NT_PACKAGE)," &
 "u22 (ttl74bct8373, NT_PACKAGE)," &
 "u20 (cf93279, FK_PACKAGE)";

Finally, describe the scan paths of the module. Most modules contain only a simple serial scan
path that can be described with one STATIC_PATH constant. List the members in the1250
STATIC_PATH constant in the order they appear on the module, listing the member closest to
TDI first and the member closest to TDO last.

 -- Paths of the module
 constant path1 : STATIC_PATH := "u22, u1, u8, u19, u21, u20, u9";

The last statement of the module is the end entity statement, completing the description.1255
end gdm;

Only ten different types of statements are needed to describe a simple module, as shown here:
entity, generic, port, use, PIN_MAP attribute, PIN_MAP_STRING constants, TAP_SCAN_...
attributes, MEMBERS attribute, STATIC_PATH constant, and end.

3.2. Describing a Board, Box, Subsystem, or System1260

The method for describing a module is used to describe any board, box, subsystem, or system.
As the module being described gets higher in the hierarchy of the unit under test, fewer members
of the module are devices and more members are modules. This does not involve any new
concepts - HSDL module descriptions treat a module and a device in the same way. Both are
members.1265

Complex boards, especially backplanes used in more complex systems, may contain scannable
card slots, chip sockets, card edge connectors, and even more than one test connector for
plugging in the test controller. Describe these hardware constructs, which each involve an open
in the scan path that is resolved later, using external paths. See Describing a Backplane for
details.1270

Some boards may be designed with scannable devices that may or may not be installed. The
scan path around the scannable devices may be jumpered to skip around them. Later, when the
board is upgraded, the scan path is rejumpered to include the devices. This is an example of ad-
hoc scan path multiplexing. Other such ad-hoc methods are possible, such as using a scannable
buffer and a multiplexer to enable and disable secondary scan paths. Boards and other modules1275
that use ad-hoc methods are described using dynamic paths. See Controlling Ad-Hoc Scan Path
Multiplexing for details.

Module-level designs often include new buses and signals that are not directly related to the
names of the signals provided by devices. For example, four different eight-bit buffers may be
used to drive a data bus. A natural desire is to want to use the name of the data bus to perform1280
testing, not the names of each of the device pins. In HSDL, bus names can be assigned to any
combination of member signals. See Assigning a Name to a Bus on a Board for details.

Revision A HSDL Syntax Specification

PRELIMINARY 33 31-Aug-1992

Boards often have design constraints that disallow certain hazardous conditions from being
established. The constraints prevent damage to the board. During testing, these design
constraints may be overridden by test-mode instructions. Constraint expressions can be used to1285
prevent damage from occurring, even when a test-mode instruction is in effect. See Preventing
Illegal Hardware Conditions for details.

3.3. Describing a Multichip Module
In HSDL, multichip modules (MCMs) are conceptually no different from a regular board, and are
described using the same set of statements. See Describing a Board, Box, Subsystem, or1290
System for details.

3.4. Describing a Backplane
Complex boards, especially backplanes used in more complex systems, may contain scannable
card slots, chip sockets, card edge connectors, and even more than one test connector for
plugging in the test controller. Describe these hardware constructs, which each involve an open1295
in the scan path that is resolved later, using external paths.

Define an external path using the EXTERNAL_PATH constant. Each external path has a TAP
associated with it, consisting of a set of four test signals (or five, if TRST is present). Define the
TAP for an external path by listing the names of each test signal in the string following the
EXTERNAL_PATH.1300

constant j1 : EXTERNAL_PATH := "TDI, TDO, TMS, TCK, TRST";

An external path is used to describe each slot, socket, connector, and so on that contains test
signals going off or coming onto the module. External paths are classified three ways,
depending on whether the test signals are input only, output only, or input/output. The TDI signal
is always an input and the TDO signal is always an output.1305

A card slot or chip socket that a scannable board or device can be plugged into is normally
designed so that its TMS, TCK, and TRST signals are all outputs. In HSDL terminology, this is a
unit-under-test connector. The EXTERNAL_PATH names four or five ports that are listed in
TAP_SCAN_... attributes. Define the ports named by TAP_SCAN_MODE, TAP_SCAN_CLOCK,
and TAP_SCAN_RESET as out ports in the port statement.1310

port (TDI : in bit;
 TDO : out bit;
 TMS, TCK, TRST : out bit); -- all outputs

 .
 .1315
 .

constant slot1 : EXTERNAL_PATH := "TDI, TDO, TMS, TCK, TRST";

A connector that the test controller can be plugged into is normally designed so that its TMS,
TCK, and TRST signals are all inputs. In HSDL terminology, this is a test connector. The
EXTERNAL_PATH names four or five ports that are listed in TAP_SCAN_... attributes. Define1320
the ports named by TAP_SCAN_MODE, TAP_SCAN_CLOCK, and TAP_SCAN_RESET as in
ports in the port statement.

port (TDI : in bit;
 TDO : out bit;
 TMS, TCK, TRST : in bit); -- all inputs1325
 .
 .
 .

constant test : EXTERNAL_PATH := "TDI, TDO, TMS, TCK, TRST";

It is possible, although unlikely, that a card slot may be designed so that either a scannable card,1330
which receives TAP signals, or a test controller, which drives TAP signals, could be plugged into
it. A backplane of such slots would not require a dedicated test connector, although the design
would probably be expensive in terms of real estate, speed, and so on. To describe such a slot,

Revision A HSDL Syntax Specification

PRELIMINARY 34 31-Aug-1992

define the ports named by TAP_SCAN_MODE, TAP_SCAN_CLOCK, and TAP_SCAN_RESET
as inout ports in the port statement.1335

port (TDI : in bit;
 TDO : out bit;
 TMS, TCK, TRST : inout bit); -- all inouts

 .
 .1340
 .

constant test : EXTERNAL_PATH := "TDI, TDO, TMS, TCK, TRST";

The primary scan path for a backplane is still described using a STATIC_PATH constant. The
test connector must be listed in the static path, and by convention it is listed first. Then list the
external path names, which define the slots, sockets, and so forth, and the member devices on1345
the backplane in the order they appear. List the item closest to TDI right after the name of the
test connector, and the item closest to TDO last.

constant primary : STATIC_PATH := "j1, slot1, slot2, slot3, u1";

3.5. Assigning a Name to a Subset of a Test Register
Test register names and contents are not usually the most convenient way to examine the data1350
shifted into and out of a device. The instruction register and bypass register contain only one
item of information, the instruction opcode and bypass bit, respectively. But many other test
registers, including the identification register and the boundary register, are broken up into
named subsets.

The identification register contains four subsets: a fixed '1' bit in the LSB, an 11-bit manufacturer1355
identity field, a 16-bit part number field, and a 4-bit version field. The boundary potentially
contains dozens of different fields, each corresponding to a grouping of cells connected to
related device pins. For example, all output cells connected to a 32-bit data bus might need to
be controlled or observed.

User-defined instructions and test registers, in order to reduce the overhead needed to1360
implement testability features, often place many items of information in the same test register, or
may even use a single test register in the hardware to load many kinds of information depending
on the instruction used to shift through that register.

Define buses in the device entity, using the BUS_COMPOSITION attribute, to assign names to
each of these test register subsets. Usually a bus consists of adjacent bits from one test register,1365
making description easy. List the bus name and length, followed by the test register name and
bit numbers giving the MSB and LSB of the bus. Remember from 1149.1 that bit 0 is the LSB
and is closest to TDO. By reversing the MSB and LSB, the bit ordering in the bus can be the
inverse of the bit order in the test register.

attribute BUS_COMPOSITION of My_IC : entity is1370
 "version[4] (IDCODE[31,28])," &
 "part_number[16] (IDCODE[27,12])," &
 "manufacturer[11] (IDCODE[11, 1])";

attribute BUS_COMPOSITION of ttl74bct8374 : entity is
 "inputs[8] (BOUNDARY[8,15])," &1375
 "outputs[8] (BOUNDARY[0, 7])," &
 "aux[2] (BOUNDARY[16,17])," &
 "lfsr[16] (BOUNDARY[0,15])";

Buses can contain any number of cells in any order from any number of test registers or even
buses. In cases where the hardware design has been heavily optimized the bits may be1380
scattered throughout a test register in any order. In rare instances related bits of information
may be located in different test registers. A bus can describe all these cases by using a list of
bus components.

Revision A HSDL Syntax Specification

PRELIMINARY 35 31-Aug-1992

attribute BUS_COMPOSITION of My_FPGA : entity is
 "databus_inputs[32] (BOUNDARY[0], BOUNDARY[3], BOUNDARY[6], BOUNDARY[9]," &1385
 "BOUNDARY[12], BOUNDARY[15], BOUNDARY[18], BOUNDARY[21]," &
 "BOUNDARY[24], BOUNDARY[27], BOUNDARY[30], BOUNDARY[33]," &
 "BOUNDARY[36], BOUNDARY[39], BOUNDARY[42], BOUNDARY[45]," &
 "BOUNDARY[48], BOUNDARY[51], BOUNDARY[54], BOUNDARY[57]," &
 "BOUNDARY[60], BOUNDARY[63], BOUNDARY[66], BOUNDARY[69]," &1390
 "BOUNDARY[72], BOUNDARY[75], BOUNDARY[78], BOUNDARY[81]," &
 "BOUNDARY[84], BOUNDARY[87], BOUNDARY[90], BOUNDARY[93] " ;

3.6. Assigning a Name to a Bus on a Board
Module-level designs often include new buses and signals that are not directly related to the
names of the signals provided by devices. For example, four different eight-bit buffers may be1395
used to drive a data bus. A natural desire is to want to use the name of the data bus to perform
testing, not the names of each of the device pins. In HSDL, bus names can be assigned to any
combination of member signals.

Define buses in the module entity using the BUS_COMPOSITION attribute. A module-level bus
may consist of a single bit from a single device, or multiple bits from several devices. List the1400
bus name and length, followed by the test register name(s) and bit numbers giving the MSB and
LSB of each component of the bus. Remember from 1149.1 that bit 0 is the LSB and is closest
to TDO. By reversing the MSB and LSB, the bit ordering of a component can be the inverse of
the bit order in the underlying test register.

attribute BUS_COMPOSITION of My_Board : entity is1405
 "addrbus[32] (u1.output, u2.output, u3.output, u4.output)," &
 "databus[32] (u5.a, u6,a, u7.a, u8.a)";

3.7. Assigning a Symbolic Name to a Value
Some test registers and buses, like the instruction register, have commands, options, and so
forth that have symbolic names. Often these names are listed on the device data sheet.1410

Define a symbol table of symbol names and values using the SYMBOL_TABLE attribute.
constant BCR_Opcodes : SYMBOL_TABLE :=
 "SAMTOG (00)," &
 "PRPG (01)," &
 "PSA (10)," &1415
 "PSAPRPG (11)";

To associate the symbols with the test register or bus they belong to, use the attributes
BOUNDARY_SYMBOLS, BUS_SYMBOLS, and REGISTER_SYMBOLS. See Assigning
Symbolic Names to a Test Register or Bus for details.

3.8. Assigning Symbolic Names to a Test Register or Bus1420

Once a symbol table has been defined (see Assigning a Symbolic Name to a Value for details), it
can be attached to a test register, a bus, or a device port. The symbols in the table can then be
used instead of bit patterns when specifying values to shift in. The symbols are also displayed
instead of bit patterns when examining values that were shifted out.

Use the REGISTER_SYMBOLS attribute to attach a symbol table to a test register.1425
attribute REGISTER_SYMBOLS of ttl74bct8374 : entity is
 "BCR (BCR_Opcodes)";

Use the BUS_SYMBOLS attribute to attach a symbol table to a bus.
attribute BUS_SYMBOLS of ttl74bct8374 : entity is
 "aux (AUX_SYMBOLS)";1430

Use the BOUNDARY_SYMBOLS attribute to attach a symbol table to a specific type of cell
attached to a port. Each different cell function (input, clock, output2, output3, bidir, control,
controlr, and internal) can have a different symbol table. Typically, the symbol table only makes
sense for clock cells, control cells, and input and output cells on single-bit ports.

Revision A HSDL Syntax Specification

PRELIMINARY 36 31-Aug-1992

attribute BOUNDARY_SYMBOLS of ttl74bct8374 : entity is1435
 "CLK (input, clk_symbols)," &
 "OC_NEG (input, oc_symbols)";

3.9. Preventing Illegal Hardware Conditions
Boards often have design constraints that disallow certain hazardous conditions from being
established. The constraints prevent damage to the board. During testing, these design1440
constraints may be overridden by test-mode instructions. Constraint expressions can be used to
prevent damage from occurring, even when a test-mode instruction is in effect.

Define a constraint using the CONSTRAINTS attribute. Constraints can be defined for both
modules and devices. Each constraint is given a name that can be displayed by the test
controller when the constraint is violated. The constraint expression is a logical expression that,1445
when true, indicates that a constraint has been violated. The constraints are evaluted before
each scan operation shifts data into the hardware, to ensure that the data is acceptable.
Alternatively, ATPG software can use the constraints to prevent the creation of vectors that
would otherwise damage the hardware.

3.10. Adding Descriptions to Each Item in the Entity1450

Reading a BSDL or HSDL description of a device or module is not the easiest undertaking. The
syntax is too cluttered and the information too terse to be immediately understandable. Textual
descriptions can be added to HSDL device and module entities to overcome this.

Define a text description for both electronic documentation and help in interactive tools.
Descriptions can be attached to buses (BUS_DESCRIPTION), constraints1455
(CONSTRAINT_DESCRIPTION), device entity names (DEVICE_DESCRIPTION), instruction
opcodes (INSTRUCTION_DESCRIPTION), member names (MEMBER_DESCRIPTION),
module entity names (MODULE_DESCRIPTION), test register names
(REGISTER_DESCRIPTION), symbol names (SYMBOL_DESCRIPTION), dynamic paths
(PATH_DESCRIPTION), external paths (PATH_DESCRIPTION), and static paths1460
(PATH_DESCRIPTION). These descriptions can be displayed by a tool when information is
requested by the user.

3.11. Controlling Ad-Hoc Scan Path Multiplexing
Some boards may be designed with scannable devices that may or may not be installed. The
scan path around the scannable devices may be jumpered to skip around them. Later, when the1465
board is upgraded, the scan path is rejumpered to include the devices. This is an example of ad-
hoc scan path multiplexing. Other ad-hoc methods are possible, such as using a scannable
buffer and a multiplexer to enable and disable secondary scan paths. Boards and other modules
that use ad-hoc methods are described using dynamic paths.

Define a dynamic path using the DYNAMIC_PATH attribute. Each case of the dynamic path lists1470
all the possible items for all cases, and selects one for inclusion in the scan path. The others are
either in Test-Logic-Reset or Run-Test/Idle state.

 constant dpath : DYNAMIC_PATH :=
 "0 (u9:dpath, short:1)," &
 "1 (u9:1, short:dpath)";1475

Each item selected by the dynamic path may need to be a list of one or more members, external
paths, static paths, or even dynamic paths. Since the dynamic path only allows a single name
for each item, so additional static paths may need to be defined using STATIC_PATH constants.
This restriction is intended to keep dynamic paths short and readable.

Revision A HSDL Syntax Specification

PRELIMINARY 37 31-Aug-1992

4.1480

Example HSDL Device Description

This example is an HSDL description for the Texas Instruments SN74BCT8374 Octal D-Type
Flip-Flop. It is based on the original BSDL description of the same device found in the HP
Boundary-Scan Tutorial and BSDL Reference Manual.

Do not consider this to be the official HSDL description of the SN74BCT8374. It is only an1485
example used to illustrate extensions in HSDL.

entity ttl74bct8374 is
 -- Generic Parameter
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");1490

 -- Logical Port Description
 port (CLK : in bit;
 Q : out bit_vector (1 to 8);
 D : in bit_vector (1 to 8);1495
 GND, VCC : linkage bit;
 OC_NEG : in bit;
 TDO : out bit;
 TMS, TDI, TCK : in bit);

1500
 -- Use Statement
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions
 use HSDL_device.all; -- Get HSDL extensions for devices

 attribute DEVICE_DESCRIPTION of ttl74bct8374 : entity is1505
 "SN74BCT8374 is a Scan Test Devices with Octal D-Type Edge-Triggered " &
 "Flip-Flops. In normal mode, on the positive transition of CLK the Q " &
 "outputs take on the logic levels setup up at the D inputs. The " &
 "output enable OC_NEG is used to place the Q outputs in the " &
 "high-impedance state, but does not affect the internal operations " &1510
 "of the flip-flop.";

 -- Port Descriptions
 attribute PORT_DESCRIPTION of D : signal is
 "Eight-bit input bus of the device.";1515
 attribute PORT_DESCRIPTION of Q : signal is
 "Eight-bit output bus of the device. All outputs can be set to " &
 "high-impedance by placing a 1 on the OC_NEG pin. All outputs can be " &
 "updated with the values on the input bus D on a positive transition " &
 "of CLK.";1520
 attribute PORT_DESCRIPTION of CLK : signal is
 "Edge-triggered flip-flop clock control of the device. All pins on " &
 "the output bus Q can be updated with the values on the input bus D " &
 "on a positive transition of CLK.";
 attribute PORT_DESCRIPTION of OC_NEG : signal is1525
 "Output control of the device. All pins on the output bus Q can be " &
 "set to high-impedance by placing a 1 on the OC_NEG pin. Disabling " &
 "the output bus Q has no effect on the internal operation of the " &
 "flip-flops.";

1530
 -- Package Pin Mapping
 attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;
 constant DW_PACKAGE : PIN_MAP_STRING :=
 "CLK:1, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," &
 "GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14";1535
 constant FK_PACKAGE : PIN_MAP_STRING :=
 "CLK:9, Q:(10,11,12,13,16,17,18,19), D:(6,5,4,3,2,27,26,25)," &
 "GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";
 constant NT_PACKAGE : PIN_MAP_STRING :=
 "CLK:1, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," &1540
 "GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14";

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;1545

Revision A HSDL Syntax Specification

PRELIMINARY 38 31-Aug-1992

 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

 -- TAP Description
 attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8;1550
 attribute INSTRUCTION_OPCODE of ttl74bct8374 : entity is
 "BYPASS (11111111, 10001000, 00000101, 10000100, 00000001)," &
 "EXTEST (00000000, 10000000)," &
 "SAMPLE (00000010, 10000010)," &
 "INTEST (00000011, 10000011)," &1555
 "TRIBYP (00000110, 10000110)," & -- Boundary Hi-Z
 "SETBYP (00000111, 10000111)," & -- Boundary 1/0
 "RUNT (00001001, 10001001)," & -- Boundary run test
 "READBN (00001010, 10001010)," & -- Boundary read normal
 "READBT (00001011, 10001011)," & -- Boundary read test1560
 "CELLTST (00001100, 10001100)," & -- Boundary selftest normal
 "TOPHIP (00001101, 10001101)," & -- Boundary toggle out test
 "SCANCN (00001110, 10001110)," & -- BCR Scan normal
 "SCANCT (00001111, 10001111)"; -- BCR Scan test
 attribute INSTRUCTION_CAPTURE of ttl74bct8374 : entity is "10000001";1565
 attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is "TRIBYP";
 attribute INSTRUCTION_GUARD of ttl74bct8374 : entity is "SETBYP";
 attribute INSTRUCTION_NORMAL of ttl74bct8374 : entity is
 "BYPASS, SAMPLE, READBN, CELLTST, SCANCN";
 attribute INSTRUCTION_TEST of ttl74bct8374 : entity is1570
 "EXTEST, INTEST, TRIBYP, SETBYP, RUNT, READBT, TOPHIP, SCANCT";
 attribute INSTRUCTION_DESCRIPTION of ttl74bct8374 : entity is
 -- instruction (description)
 "BYPASS ('Select BYPASS register in normal mode.')," &
 "EXTEST ('Select Boundary-Scan register in test mode; control device" &1575
 "inputs and outputs using the contents of the Boundary.')," &
 "SAMPLE ('Select Boundary-Scan register in normal mode; sample " &
 "device inputs and outputs into the Boundary.')," &
 "INTEST ('Select Boundary-Scan register in test mode; control device" &
 "inputs and outputs using the contents of the Boundary.')," &1580
 "TRIBYP ('Select BYPASS register in test mode; control device " &
 "outputs to high-impedance.')," &
 "SETBYP ('Select BYPASS register in test mode; control device " &
 "outputs using the contents of the Boundary.')," &
 "RUNT ('Execute the test loaded into the Boundary Control " &1585
 "Register in the Run-Test/Idle state.')," &
 "READBN ('Select Boundary-Scan register in normal mode; Boundary " &
 "cell contents are not changed in Capture-DR.')," &
 "READBT ('Select Boundary-Scan register in test mode; Boundary cell " &
 "contents are not changed in Capture-DR.')," &1590
 "CELLTST ('Select Boundary-Scan register in normal mode; Boundary " &
 "cell contents are inverted and captured in Capture-DR.')," &
 "TOPHIP ('Select BYPASS register in test mode; toggle outputs of " &
 "device pins from Boundary while holding device inputs.')," &
 "SCANCN ('Select Boundary Control Register in normal mode.')," &1595
 "SCANCT ('Select Boundary Control Register in test mode.')";

 -- Symbol Table Descriptions
 constant BCR_Opcodes : SYMBOL_TABLE :=
 -- symbol (value, ..., value)1600
 "SAMTOG (00)," &
 "PRPG (01)," &
 "PSA (10)," &
 "PSAPRPG (11)";
 attribute SYMBOL_DESCRIPTION of BCR_Opcodes : constant is1605
 -- symbol (description)
 "SAMTOG ('Samples device inputs on input bus; toggles device outputs " &
 "from output bus.')," &
 "PRPG ('Conducts 16-bit Pseudo-Random Pattern Generation using the " &
 "contents of the input and output buses of the Boundary-Scan " &1610
 "register as an initial value. The Q outputs of the device " &
 "will be set to the value in the output bus. A new pattern " &
 "is generated on each TCK in Run-Test/Idle state.')," &
 "PSA ('Conducts 16-bit Parallel Signature Analysis using the " &
 "contents of the input and output buses of the Boundary-Scan " &1615
 "register as an initial value. The Q outputs of the device " &
 "will be set to the value in the output bus. A new checksum" &
 "is generated on each TCK in Run-Test/Idle state.')," &
 "PSAPRPG('Simultaneous 8-bit PSA on the D inputs and 8-bit PRPG on " &
 "the Q outputs.')";1620

Revision A HSDL Syntax Specification

PRELIMINARY 39 31-Aug-1992

 constant AUX_SYMBOLS : SYMBOL_TABLE :=
 "enable (0X)," &
 "disable (1X)";
 attribute SYMBOL_DESCRIPTION of AUX_SYMBOLS : constant is
 "enable ('Enable device output pins in test mode.')," &1625
 "disable ('Set device output pins to high-impedance in test mode.')";
 constant CLK_SYMBOLS : SYMBOL_TABLE :=
 "CLK_HIGH (1), CLK_LOW (0)";
 constant OC_SYMBOLS : SYMBOL_TABLE :=
 "drive (0), threestate (1)";1630

 -- Registers of the device
 attribute REGISTER_ACCESS of ttl74bct8374 : entity is
 "BOUNDARY (READBN, READBT, CELLTST)," &
 "BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &1635
 "BCR[2] (SCANCN, SCANCT)"; -- 2-bit Boundary Control Register
 attribute REGISTER_SYMBOLS of ttl74bct8374 : entity is
 -- reg (symbol_table)
 "BCR (BCR_SYMBOLS)";
 attribute REGISTER_DESCRIPTION of ttl74bct8374 : entity is1640
 -- reg (description)
 "BOUNDARY ('The Boundary-Scan register contains the cells attached " &
 "to the pins of the device.')," &
 "BYPASS ('The BYPASS register is a one-bit register that always " &
 "loads a 0 in the Capture-DR state. It is used to speed " &1645
 "up scanning to the UUT when a device is not used during " &
 "a test.')," &
 "BCR ('The Boundary Control Register is a design-specific " &
 "test data register used to specify the test operation - " &
 "PSA, PRPG - that will be performed by the RUNT " &1650
 "instruction.')";
 attribute REGISTER_CAPTURE of ttl74bct8374 : entity is
 -- reg (capturevalue, pass/fail, description)
 "BYPASS (0, pass, 'The BYPASS register is working correctly.')";
 -- Note that this capture value did not need to be specified.1655
 attribute REGISTER_RESET of ttl74bct8374 : entity is
 -- reg (resetvalue)
 "INSTRUCTION (BYPASS)," & -- This does not need to be specified.
 "BCR (PSA)";

1660
 -- Boundary Register Description
 attribute BOUNDARY_CELLS of ttl74bct8374 : entity is "BC_1";
 attribute BOUNDARY_LENGTH of ttl74bct8374 : entity is 18;
 attribute BOUNDARY_REGISTER of ttl74bct8374 : entity is
 -- num cell port function safe [ccell disval rslt]1665
 "17 (BC_1, CLK, input, X)," &
 "16 (BC_1, OC_NEG, input, X)," & -- Merged input/control
 "16 (BC_1, *, control, 1)," & -- Merged input/control
 "15 (BC_1, D(1), input, X)," &
 "14 (BC_1, D(2), input, X)," &1670
 "13 (BC_1, D(3), input, X)," &
 "12 (BC_1, D(4), input, X)," &
 "11 (BC_1, D(5), input, X)," &
 "10 (BC_1, D(6), input, X)," &
 " 9 (BC_1, D(7), input, X)," &1675
 " 8 (BC_1, D(8), input, X)," &
 " 7 (BC_1, Q(1), output3, X, 16, 1, Z)," &
 " 6 (BC_1, Q(2), output3, X, 16, 1, Z)," &
 " 5 (BC_1, Q(3), output3, X, 16, 1, Z)," &
 " 4 (BC_1, Q(4), output3, X, 16, 1, Z)," &1680
 " 3 (BC_1, Q(5), output3, X, 16, 1, Z)," &
 " 2 (BC_1, Q(6), output3, X, 16, 1, Z)," &
 " 1 (BC_1, Q(7), output3, X, 16, 1, Z)," &
 " 0 (BC_1, Q(8), output3, X, 16, 1, Z)";
 -- outputs controlled from cell 16 set to 0 are Hi-Z.1685
 -- cell 16 has a merged function, both input and control.

 attribute BOUNDARY_SYMBOLS of ttl74bct8374 : entity is
 -- port (function, symbol_table)
 "CLK (input, clk_symbols)," &1690
 "OC_NEG (input, oc_symbols)";

 -- Buses of the device
 attribute BUS_COMPOSITION of ttl74bct8374 : entity is
 -- bus[length] (reg, reg[bit], reg[bit,bit], ...)1695

Revision A HSDL Syntax Specification

PRELIMINARY 40 31-Aug-1992

 "inputs[8] (BOUNDARY[8,15])," &
 "outputs[8] (BOUNDARY[0, 7])," &
 "aux[2] (BOUNDARY[16,17])," &
 "lfsr[16] (BOUNDARY[0,15])";
 attribute BUS_SYMBOLS of ttl74bct8374 : entity is1700
 -- bus (symbol_table)
 "aux (AUX_SYMBOLS)";
 attribute BUS_DESCRIPTION of ttl74bct8374 : entity is
 -- bus (description)
 "inputs ('The eight cells of the Boundary-Scan register " &1705
 "that are connected to the D inputs are combined " &
 "to form the input bus.')," &
 "outputs ('The eight cells of the Boundary-Scan register " &
 "that are connected to the Q outputs are " &
 "combined to form the output bus.')," &1710
 "aux ('The two cells of the Boundary-Scan register " &
 "that are connected to the CLK and OC_NEG pins " &
 "are combined to form the aux bus.')," &
 "lfsr ('A bus used by the bcr.')";

1715
 -- Constraint Descriptions
 attribute CONSTRAINTS of ttl74bct8374 : entity is
 -- constraint (expression)
 "bad_device (BYPASS = 1)"; -- this is an example ONLY
 attribute CONSTRAINT_DESCRIPTION of ttl74bct8374: entity is1720
 -- constraint (description)
 "bad_device ('The device fails if BYPASS is a 1 (not true)!')";

end ttl74bct8374;

1725

Revision A HSDL Syntax Specification

PRELIMINARY 41 31-Aug-1992

5.
Example HSDL Module Descriptions

5.1. HSDL for General Demonstration Module
This HSDL example was written for the General Demonstration Module that can be purchased
for use with Texas Instruments' ASSET Scan-Based Diagnostics System.1730

entity gdm is
 -- Generic Parameter
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

1735
 -- Logical Port Description
 port (LCLK : in bit;
 UUTCLK : out bit;
 TMSR : in bit;
 GND : linkage bit_vector (1 to 7);1740
 EVT0 : linkage bit;
 TDO : out bit;
 TMS, TDI, TRST : in bit);

 -- Use Statement1745
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions
 use HSDL_module.all; -- Get HSDL extensions for modules

 attribute MODULE_DESCRIPTION of gdm: entity is
 "The General Demonstration Module (GDM) is an example board that was " &1750
 "designed to demonstrate some of the capabilities of an 1149.1 UUT.";

 -- Port Descriptions
 attribute PORT_DESCRIPTION of EVT0 : signal is
 "Unimplemented event-qualification line.";1755

 -- Package Pin Mapping
 attribute PIN_MAP of gdm : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=
 "LCLK: 1, UUTCLK: 2, TDI: 3, TDO: 4, TMS: 5, TMSR: 6, TRST: 7," &1760
 "EVT0: 8, GND: (9, 10, 11, 12, 13, 14, 15)";

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;1765
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_RESET of TRST : signal is true;
 attribute TAP_SCAN_CLOCK of LCLK : signal is (20.0e6, BOTH);

 -- Member Description1770
 attribute MEMBERS of gdm : entity is
 "u19 (ttl74bct8244, NT_PACKAGE)," &
 "u21 (ttl74bct8244, NT_PACKAGE)," &
 "u9 (ttl74bct8244, NT_PACKAGE)," &
 "u8 (ttl74bct8244, NT_PACKAGE)," &1775
 "u1 (ttl74bct8244, NT_PACKAGE)," &
 "u22 (ttl74bct8373, NT_PACKAGE)," &
 "u20 (cf93279, FK_PACKAGE)";
 attribute MEMBER_DESCRIPTION of gdm : entity is
 "u19 ('Provides controllability/observability for combinational logic.')," &1780
 "u21 ('Provides observability of D2 hex LED inputs.')," &
 "u9 ('Provides controllability/observability for combinational logic.')," &
 "u8 ('Provides controllability/observability of AT1 LED inputs.')," &
 "u1 ('Provides test points in sequential logic.')," &
 "u22 ('Buffers the SQWV clock signal.')," &1785
 "u20 ('Performs floating-point conversions.')";

 -- Buses of the module
 attribute BUS_COMPOSITION of gdm : entity is
 -- bus[length] (reg, reg[bit], reg[bit,bit], ...)1790
 "da30[1] (u19.inputs[7,7])," &

Revision A HSDL Syntax Specification

PRELIMINARY 42 31-Aug-1992

 "da31[1] (u19.inputs[6,6])," &
 "da30d[1] (u19.inputs[5,5])" ;
 attribute BUS_DESCRIPTION of gdm : entity is
 -- bus (description)1795
 "da30 ('A one-bit bus.')," &
 "da31 ('Another one-bit bus.')," &
 "da30d ('A third one-bit bus.')" ;

 -- Paths of the module1800
 constant path1 : STATIC_PATH := "u22, u1, u8, u19, u21, u20, u9";

 -- Constraint Descriptions
 attribute CONSTRAINTS of gdm : entity is
 -- constraint (expression)1805
 "bad_direction (u20.oez = 0 and u20.dir = 1)";
 attribute CONSTRAINT_DESCRIPTION of gdm: entity is
 -- constraint (description)
 "bad_direction ('You can''t do that with the GDM!')";

1810
end gdm;

5.2. HSDL for Figure 3-1 of IEEE Std 1149.1-1990
This HSDL example was written for Figure 3-1, found on page 3-6 of IEEE Std 1149.1-1990.
This is a simple serial connection of four devices.1815

TDI TDO

TMS TCK

TDI TDO

TMS TCK

TDI TDO

TMS TCK

TDI TDO

TMS TCK

TDI TDO

TMS
TCK

entity fig3_1 is
 -- Generic Parameter
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");1820

 -- Logical Port Description
 -- external ASSET connector
 port (TCK : in bit;
 TDO : out bit;1825
 TMS, TDI : in bit);

 -- Use Statement
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions
 use HSDL_module.all; -- Get HSDL extensions for modules1830

 attribute MODULE_DESCRIPTION of fig3_1: entity is
 "The Fig3_1 Module (FIG3_1) is an example board that was created " &
 "from Figure 3-1 of IEEE Std 1149.1-1990.";

1835
 -- Package Pin Mapping
 attribute PIN_MAP of fig3_1 : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=
 "TDI:1, TDO:2, TCK:3, TMS:4";

1840
 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);1845

 -- Member Description
 attribute MEMBERS of fig3_1 : entity is
 "u1 (chip, std_package)," &
 "u2 (chip, std_package)," &1850
 "u3 (chip, std_package)," &
 "u4 (chip, std_package) " ;

Revision A HSDL Syntax Specification

PRELIMINARY 43 31-Aug-1992

 -- Paths of the module
 constant PATH : STATIC_PATH := "u1, u2, u3, u4";1855

end fig3_1;

5.3. HSDL for Figure 3-2 of IEEE Std 1149.1-1990
This HSDL example was written for Figure 3-2, found on page 3-6 of IEEE Std 1149.1-1990.1860
The four devices are connected in two paralleled serial chains.

TDI TDO

TMS TCK

TDI TDO

TMS TCK

TDI TDO

TCK TMS

TDI

TDO
TMS1
TCK

TDI TDO

TCK TMS

TMS2

U1 U2

U3 U4

entity fig3_2 is
 -- Generic Parameter1865
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

 -- Logical Port Description
 -- external ASSET connector
 port (TCK : in bit;1870
 TDO : out bit;
 TMS1, TMS2 : in bit;
 TDI : in bit);

 -- Use Statement1875
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions
 use HSDL_module.all; -- Get HSDL extensions for modules

 attribute MODULE_DESCRIPTION of fig3_2: entity is
 "The Fig3_2 Module (FIG3_2) is an example board that was created " &1880
 "from Figure 3-2 of IEEE Std 1149.1-1990.";

 -- Package Pin Mapping
 attribute PIN_MAP of fig3_2 : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=1885
 "TDI:1, TDO:2, TCK:3, TMS1:4, TMS2:5";

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS1 : signal is true;1890
 attribute TAP_SCAN_MODE of TMS2 : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

 -- Member Description1895
 attribute MEMBERS of fig3_2 : entity is
 "u1 (chip, std_package)," &
 "u2 (chip, std_package)," &
 "u3 (chip, std_package)," &
 "u4 (chip, std_package) " ;1900

 -- Paths of the module
 constant J1 : EXTERNAL_PATH := "TDI, TDO, TCK, TMS1";
 constant J2 : EXTERNAL_PATH := "TDI, TDO, TCK, TMS2";

1905
 constant PATH1 : STATIC_PATH := "J1, u1, u2";

 constant PATH2 : STATIC_PATH := "J2, u3, u4";

Revision A HSDL Syntax Specification

PRELIMINARY 44 31-Aug-1992

end fig3_2;1910

5.4. HSDL for Figure 3-3 of IEEE Std 1149.1-1990
This HSDL example was written for Figure 3-3, found on path 3-7 of IEEE Std 1149.1-1990.
This module consists of four independent scan paths with common TMS and TCK signals.

TDI1

TDO1

TMS
TCK

TDI2

TDO2

TDI3

TDO3

TDI4

TDO4

TDI

TDO

TMS

TCK

TDI

TDO

TMS

TCK

TDI

TDO

TMS

TCK

TDI

TDO

TMS

TCK

1915

entity fig3_3 is
 -- Generic Parameter
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

1920
 -- Logical Port Description
 -- external ASSET connector
 port (TCK : in bit;
 TDO1 : out bit;
 TDO2 : out bit;1925
 TDO3 : out bit;
 TDO4 : out bit;
 TMS : in bit;
 TDI1 : in bit;
 TDI2 : in bit;1930
 TDI3 : in bit;
 TDI4 : in bit);

 -- Use Statement
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions1935
 use HSDL_module.all; -- Get HSDL extensions for modules

 attribute MODULE_DESCRIPTION of fig3_3: entity is
 "The Fig3_3 Module (FIG3_3) is an example board that was created " &
 "from Figure 3-3 of IEEE Std 1149.1-1990.";1940

 -- Package Pin Mapping
 attribute PIN_MAP of fig3_3 : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=
 "TDI1:1, TDI2:2, TDI3:3, TDI4:4," &1945
 "TDO1:5, TDO2:6, TDO3:7, TDO4:8," &
 "TCK:9, TMS:10";

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI1 : signal is true;1950
 attribute TAP_SCAN_IN of TDI2 : signal is true;
 attribute TAP_SCAN_IN of TDI3 : signal is true;
 attribute TAP_SCAN_IN of TDI4 : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO1 : signal is true;1955
 attribute TAP_SCAN_OUT of TDO2 : signal is true;
 attribute TAP_SCAN_OUT of TDO3 : signal is true;
 attribute TAP_SCAN_OUT of TDO4 : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

1960

Revision A HSDL Syntax Specification

PRELIMINARY 45 31-Aug-1992

 -- Member Description
 attribute MEMBERS of fig3_3 : entity is
 "u1 (chip, std_package)," &
 "u2 (chip, std_package)," &
 "u3 (chip, std_package)," &1965
 "u4 (chip, std_package) " ;

 -- Paths of the module
 constant J1 : EXTERNAL_PATH := "TDI1, TDO1, TCK, TMS";
 constant J2 : EXTERNAL_PATH := "TDI2, TDO2, TCK, TMS";1970
 constant J3 : EXTERNAL_PATH := "TDI3, TDO3, TCK, TMS";
 constant J4 : EXTERNAL_PATH := "TDI4, TDO4, TCK, TMS";

 constant PATH1 : STATIC_PATH := "J1, u1";
 constant PATH2 : STATIC_PATH := "J2, u2";1975
 constant PATH3 : STATIC_PATH := "J3, u3";
 constant PATH4 : STATIC_PATH := "J4, u4";

end fig3_3;

1980

5.5. HSDL for Fictional Module
This HSDL example was written for a fictional board. The FICTION module contains nine
devices, one SPL, one dedicated test connector, a dynamic path, and four external paths.

entity fiction is1985
 -- Generic Parameter
 generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

 -- Logical Port Description
 -- external ASSET connector1990
 port (LCLK : inout bit;
 UUTCLK : out bit;
 TMSR : in bit;
 GND : linkage bit_vector (1 to 7);
 EVT0 : linkage bit;1995
 TDI : in bit;
 TDO : out bit;
 TMS, TRST : inout bit;

 -- ram32 slot connectors2000
 J2_TCK, J2_TMS : inout bit;
 J2_TDI : out bit;
 J2_TDO : in bit;
 J2_DATABUS : inout bit_vector (31 downto 0);
 J2_ADDRBUS : out bit_vector (23 downto 0);2005
 J2_RW : out bit;

 -- backplane slot connectors (scannable VGA feature connectors!)
 J3_TCK, J3_TMS : inout bit;
 J3_TDI : out bit;2010
 J3_TDO : in bit;
 J3_RED : out bit;
 J3_GRN : out bit;
 J3_BLU : out bit;
 J3_REDRTN : in bit;2015
 J3_GRNRTN : in bit;
 J3_BLURTN : in bit;
 J3_HSYNC : out bit;
 J3_VSYNC : out bit;
 J3_SYNCRTN : in bit;2020
 J3_ID : in bit_vector (0 to 2);

 J4_TCK, J4_TMS : inout bit;
 J4_TDI : out bit;
 J4_TDO : in bit;2025
 J4_RED : out bit;
 J4_GRN : out bit;
 J4_BLU : out bit;
 J4_REDRTN : in bit;

Revision A HSDL Syntax Specification

PRELIMINARY 46 31-Aug-1992

 J4_GRNRTN : in bit;2030
 J4_BLURTN : in bit;
 J4_HSYNC : out bit;
 J4_VSYNC : out bit;
 J4_SYNCRTN : in bit;
 J4_ID : in bit_vector (0 to 2);2035

 J5_TCK, J5_TMS : inout bit;
 J5_TDI : out bit;
 J5_TDO : in bit;
 J5_RED : out bit;2040
 J5_GRN : out bit;
 J5_BLU : out bit;
 J5_REDRTN : in bit;
 J5_GRNRTN : in bit;
 J5_BLURTN : in bit;2045
 J5_HSYN : out bit;
 J5_VSYN : out bit;
 J5_HSYNC : out bit;
 J5_VSYNC : out bit;
 J5_SYNCRTN : in bit;2050
 J5_ID : in bit_vector (0 to 2));

 -- Use Statement
 use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and definitions
 use HSDL_module.all; -- Get HSDL extensions for modules2055

 attribute MODULE_DESCRIPTION of fiction: entity is
 "The Fictional Module (FICTION) is an example board that was created " &
 "from Adam Sheppard's imagination to help define HSDL. It is the " &
 "motherboard for a computer. The motherboard contains an SPL, a " &2060
 "manual scan path switch, and four slots. This is a MultiMedia(TM) PC.";

 -- Port Descriptions
 attribute PORT_DESCRIPTION of EVT0 : signal is
 "Unimplemented event-qualification line.";2065

 -- Package Pin Mapping
 attribute PIN_MAP of fiction : entity is PHYSICAL_PIN_MAP;
 constant ONLY_PACKAGE : PIN_MAP_STRING :=
 "LCLK: J1_1, UUTCLK: J1_2, " &2070
 "TDI: J1_3, TDO: J1_4, TMS: J1_5, TMSR: J1_6, TRST: J1_7," &
 "EVT0: J1_8, GND: (J1_9, J1_10, J1_11, J1_12, J1_13, J1_14, J1_15)" &

 "J2_TCK: J2_1, J2_TMS: J2_2, J2_TDI: J2_3, J2_TDO: J2_4," &
 "J2_DATABUS: (J2_5, J2_6, J2_7, J2_8, J2_9, J2_10,J2_11,J2_12," &2075
 "J2_13,J2_14,J2_15,J2_16,J2_17,J2_18,J2_19,J2_20," &
 "J2_21,J2_22,J2_23,J2_24,J2_25,J2_26,J2_27,J2_28," &
 "J2_29,J2_30,J2_31,J2_32,J2_33,J2_34,J2_35,J2_36)," &
 "J2_ADDRBUS: (J2_37,J2_38,J2_39,J2_40,J2_41,J2_42,J2_43,J2_44," &
 "J2_45,J2_46,J2_47,J2_48,J2_49,J2_50,J2_51,J2_52," &2080
 "J2_53,J2_54,J2_55,J2_56,J2_57,J2_58,J2_59,J2_60)," &
 "J2_RW: J2_61," &

 "J3_TCK: J3_16, J3_TMS: J3_17, J3_TDI: J3_18, J3_TDO: J3_19, " &
 "J3_RED: J3_1, J3_GRN: J3_2, J3_BLU: J3_3, " &2085
 "J3_REDRTN: J3_6, J3_GRNRTN: J3_7, J3_BLURTN: J3_8," &
 "J3_HSYNC: J3_13, J3_VSYNC: J3_14, J3_SYNCRTN: J3_10, " &
 "J3_ID: (J3_4, J3_12, J3_11)," &

 "J4_TCK: J4_16, J4_TMS: J4_17, J4_TDI: J4_18, J4_TDO: J4_19, " &2090
 "J4_RED: J4_1, J4_GRN: J4_2, J4_BLU: J4_3, " &
 "J4_REDRTN: J4_6, J4_GRNRTN: J4_7, J4_BLURTN: J4_8," &
 "J4_HSYNC: J4_13, J4_VSYNC: J4_14, J4_SYNCRTN: J4_10, " &
 "J4_ID: (J4_4, J4_12, J4_11)," &

2095
 "J5_TCK: J5_16, J5_TMS: J5_17, J5_TDI: J5_18, J5_TDO: J5_19, " &
 "J5_RED: J5_1, J5_GRN: J5_2, J5_BLU: J5_3, " &
 "J5_REDRTN: J5_6, J5_GRNRTN: J5_7, J5_BLURTN: J5_8," &
 "J5_HSYNC: J5_13, J5_VSYNC: J5_14, J5_SYNCRTN: J5_10, " &
 "J5_ID: (J5_4, J5_12, J5_11)";2100

Revision A HSDL Syntax Specification

PRELIMINARY 47 31-Aug-1992

 -- Scan Port Identification
 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;2105
 attribute TAP_SCAN_RESET of TRST : signal is true;
 attribute TAP_SCAN_CLOCK of LCLK : signal is (20.0e6, BOTH);

 attribute TAP_SCAN_IN of J2_TDO : signal is true;
 attribute TAP_SCAN_MODE of J2_TMS : signal is true;2110
 attribute TAP_SCAN_OUT of J2_TDI : signal is true;
 attribute TAP_SCAN_CLOCK of J2_TCK : signal is (20.0e6, BOTH);

 attribute TAP_SCAN_IN of J3_TDO : signal is true;
 attribute TAP_SCAN_MODE of J3_TMS : signal is true;2115
 attribute TAP_SCAN_OUT of J3_TDI : signal is true;
 attribute TAP_SCAN_CLOCK of J3_TCK : signal is (20.0e6, BOTH);

 attribute TAP_SCAN_IN of J4_TDO : signal is true;
 attribute TAP_SCAN_MODE of J4_TMS : signal is true;2120
 attribute TAP_SCAN_OUT of J4_TDI : signal is true;
 attribute TAP_SCAN_CLOCK of J4_TCK : signal is (20.0e6, BOTH);

 attribute TAP_SCAN_IN of J5_TDO : signal is true;
 attribute TAP_SCAN_MODE of J5_TMS : signal is true;2125
 attribute TAP_SCAN_OUT of J5_TDI : signal is true;
 attribute TAP_SCAN_CLOCK of J5_TCK : signal is (20.0e6, BOTH);

 -- Member Description
 attribute MEMBERS of fiction : entity is2130
 "u1 (i486, FK_PACKAGE)," &
 "u2 (sn74act8997, FK_PACKAGE)," &
 "u3 (sn74bct8245, FK_PACKAGE)," &
 "u4 (sn74bct8245, FK_PACKAGE)," &
 "u5 (sn74bct8245, FK_PACKAGE)," &2135
 "u6 (sn74bct8245, FK_PACKAGE)," &
 "u7 (sn74bct8244, FK_PACKAGE)," &
 "u8 (sn74bct8244, FK_PACKAGE)," &
 "u9 (tms320c40, FK_PACKAGE)," &
 "u10 (sn74bct8373, FK_PACKAGE)" ;2140
 attribute MEMBER_DESCRIPTION of fiction : entity is
 "u1 ('CPU.')," &
 "u2 ('The SPL is used to isolate motherboard RAM and the 32-bit slot " &
 "from the rest of the test logic to improve failure analysis.')," &
 "u3 ('Data bus between i486 and memory, lines d0-d7.')," &2145
 "u4 ('Data bus between i486 and memory, lines d8-d15.')," &
 "u5 ('Data bus between i486 and memory, lines d16-d23.')," &
 "u6 ('Data bus between i486 and memory, lines d24-d32.')," &
 "u7 ('Chipset override control logic.')," &
 "u8 ('Hard disk controller override logic.')," &2150
 "u9 ('DSP used to oversee multimedia functions.')," &
 "u10 ('Keyboard override control logic.')" ;

 -- Symbol Table Descriptions
2155

 -- Buses of the module

 -- Paths of the module
 constant J1 : EXTERNAL_PATH := "TDI, TDO, TMS, LCLK, TRST";
 attribute PATH_DESCRIPTION of J1 : constant is2160
 "J1 is the scan test connector for this board.";

 constant J2 : EXTERNAL_PATH := "J2_TDI, J2_TDO, J2_TMS, J2_TCK";
 constant J3 : EXTERNAL_PATH := "J3_TDI, J3_TDO, J3_TMS, J3_TCK";
 constant J4 : EXTERNAL_PATH := "J4_TDI, J4_TDO, J4_TMS, J4_TCK";2165
 constant J5 : EXTERNAL_PATH := "J5_TDI, J5_TDO, J5_TMS, J5_TCK";

 constant subpath1 : STATIC_PATH := "u3, u4, u5, u6";
 constant short : STATIC_PATH := "";
 attribute PATH_DESCRIPTION of short : constant is2170
 "Short is an empty static path, representing a wire between TDI and TDO.";

Revision A HSDL Syntax Specification

PRELIMINARY 48 31-Aug-1992

 constant dpath : DYNAMIC_PATH :=
 "0 (u9:dpath, short:1)," &
 "1 (u9:1, short:dpath)";2175
 attribute PATH_DESCRIPTION of dpath : constant is
 "The dynamic path dpath is used to remove the C40 from " &
 "the scan path if the device is not mounted on the board.";

 constant boardpath : STATIC_PATH :=2180
 "J1, u1, u2, u7, J3, J4, J5, u8, dpath, u10";

 attribute CONNECTIONS of fiction : entity is
 "u2 (ssp1:subpath1, ssp2:j2, ssp3:*, ssp4:*)";

2185
 -- Constraint Descriptions

end fiction;

2190

Revision A HSDL Syntax Specification

PRELIMINARY 49 31-Aug-1992

A.
Hierarchical Scan Description Language Syntax

A.1. List of HSDL Statements
attribute BOUNDARY_SYMBOLS (HSDL devices) ... 50
attribute BUS_COMPOSITION (HSDL)... 522195
attribute BUS_DESCRIPTION (HSDL).. 55
attribute BUS_SYMBOLS (HSDL) .. 56
attribute CONNECTIONS (HSDL modules)... 57
attribute CONSTRAINTS (HSDL) ... 60
attribute CONSTRAINT_DESCRIPTION (HSDL) .. 662200
attribute DEVICE_DESCRIPTION (HSDL devices) ... 67
attribute DYNAMIC_PATH_RESET (HSDL modules) ... 68
attribute INSTRUCTION_DESCRIPTION (HSDL devices) .. 69
attribute INSTRUCTION_NORMAL (HSDL devices) ... 71
attribute INSTRUCTION_TEST (HSDL devices)... 722205
attribute MEMBERS (HSDL modules)... 73
attribute MEMBER_DESCRIPTION (HSDL modules) ... 74
attribute MODULE_DESCRIPTION (HSDL modules).. 75
attribute PATH_DESCRIPTION (HSDL modules) ... 76
attribute PORT_DESCRIPTION (HSDL) ... 772210
attribute REGISTER_CAPTURE (HSDL devices) ... 78
attribute REGISTER_COMPOSITION (HSDL devices) ... 80
attribute REGISTER_DESCRIPTION (HSDL devices) .. 83
attribute REGISTER_RESET (HSDL devices) .. 84
attribute REGISTER_SYMBOLS (HSDL devices)... 852215
attribute SYMBOL_DEFAULT (HSDL) .. 86
attribute SYMBOL_DESCRIPTION (HSDL) .. 87
attribute SYMBOL_OF_TDI (HSDL).. 88
attribute SYMBOL_OF_TDO (HSDL).. 89
constant DYNAMIC_PATH (HSDL modules) .. 902220
constant EXTERNAL_PATH (HSDL modules) .. 93
constant STATIC_PATH (HSDL modules) .. 96
constant SYMBOL_TABLE (HSDL) .. 98
use HSDL_device.all (HSDL devices) .. 100
use HSDL_module.all (HSDL modules) ... 1012225

Revision A HSDL Syntax Specification

PRELIMINARY 50 31-Aug-1992

attribute BOUNDARY_SYMBOLS (HSDL devices)

Description This optional "attribute" statement associates a symbol table with a boundary-
scan register cell attached to a device port. The TDI or TDI/TDO symbols
named in the symbol table can then be shifted into the specified cells, and the
TDI/TDO or TDO symbols named in the symbol table can be used as2230
replacements for bit patterns that are captured and shifted out of the specified
cells. The cells "behind" the device ports can be controlled symbolically by
using names instead of numbers. Usability is increased because the test
engineer no longer needs to remember the bit patterns, just the names.

For simple device ports with only one boundary-scan cell attached to them, the2235
symbol table can be thought of as being associated with the device port itself.
For device ports with two or more cells attached to them, the situation is more
complex. A symbol table can be associated with each type of cell attached to
the port. For example, a simple bidirectional cell can consist of three cells: an
input cell, an output cell, and a control cell.2240

The connection between boundary-scan register cells and device ports is made
in the BOUNDARY_REGISTER attribute of BSDL. The input and output cell
functions are directly attached to the device port; the control cell is indirectly
attached to the device port through the optional <Disable Cell> portion of the
cell's description. Thus, cells with the functions input, output2, output3, control,2245
controlr, clock, and bidir can have a symbol table associated with them.

Internal cells cannot be associated with a symbol table using this attribute
because they are not attached to a device port. A symbol table may be
associated with an internal cell by defining a one-bit bus on that internal cell
(using the BUS_COMPOSITION attribute) and associating a symbol table with2250
the bus.

Syntax

attribute BOUNDARY_SYMBOLS of <device id> : entity is
 "<Boundary Symbol List>";

<Boundary Symbol List> is:2255
<Boundary Symbol>
<Boundary Symbol>, <Boundary Symbol>
<Boundary Symbol>,...<Boundary Symbol>

<Boundary Symbol> is:
<Port Name> (<Function>, <Symbol Table Name>)2260

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.

<Port Name> A <VHDL identifier> giving the name of a
previously defined port to associate a symbol2265
table with.

<Function> A <VHDL identifier> giving the function of the
port to associate a symbol table with.

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table to attach to the2270
test register. A symbol table may be attached to
any number of test registers.

Revision A HSDL Syntax Specification

PRELIMINARY 51 31-Aug-1992

Examples
attribute BOUNDARY_SYMBOLS of ttl74bct8374 : entity is
 "CLK (input, clk_symbols)," &2275
 "OC_NEG (input, oc_symbols)";

See Also attribute BUS_SYMBOLS (HSDL), attribute SYMBOL_OF_TDI (HSDL), attribute
SYMBOL_OF_TDO (HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 52 31-Aug-1992

attribute BUS_COMPOSITION (HSDL)

Description This optional "attribute" statement defines logical buses that may be present in2280
the entity. A bus is a collection of bits from one or more test registers, chosen to
represent a natural grouping of data signals in a design. Obvious examples of
buses include the address and data buses common to microprocessor designs.
Other examples include the manufacturer, part number, and version fields of the
IDCODE register, and the various status and control bits that may be present in2285
internal, user-defined test data registers.

A bus can be created any time it would be more convenient or more natural to
refer to scan cells in an order that differs from their physical ordering in a test
register. This can be a common requirement, given that the design and layout
of test registers is often controlled by concerns like reducing test logic overhead2290
and conserving valuable "real estate". The bits in the resulting test registers
may be in an arbitrary order not corresponding to their logical meaning.

When a bus is modified by the test controller, the corresponding bits in the test
registers that make up the bus are also modified to reflect the change. When
the value of a bus is retrieved by the test controller, the corresponding bits in the2295
test registers that make up the bus are retrieved. In this way, a bus is a logical
view into the physical test register.

Both device and module entities may define buses. A device bus is composed
of subsets of one or more test registers or buses defined in the device entity. A
module bus is similar, but the test registers and buses on which it is based can2300
also be contained in module members.

Defining a bus is very similar to the method for defining concatenated test
registers, using the REGISTER_COMPOSITION attribute. The two statements
share similar syntax.

Syntax2305

attribute BUS_COMPOSITION of <entity id> : entity is
 "<Bus Definition List>";

<Bus Definition List> is:
<Bus Definition>
<Bus Definition>, <Bus Definition>2310
<Bus Definition>,...<Bus Definition>

<Bus Definition> is:
<Bus Name>[<Bus Width>] (<Bus Composition>)

<Bus Width> is:
<VHDL Integer>2315

<Bus Composition> is:
<Bus Component>
<Bus Component>, <Bus Component>
<Bus Component>,...<Bus Component>

<Bus Component> is:2320
<Bus Qualifier>.<Bus Bits>
<Bus Bits>

<Bus Qualifier> is:
<Member Name>
<Member Name>.<Bus Qualifier>2325

Revision A HSDL Syntax Specification

PRELIMINARY 53 31-Aug-1992

<Bus Bits> is:
<Register>
<Register Cell>
<Register Cell Range>
<Bus Name>2330
<Bus Single Bit>
<Bus Bit Range>

<Bus Single Bit> is:
<Bus Name> [<Bus Bit>]

<Bus Bit Range> is:2335
<Bus Name> [<Bus MSB>, <Bus LSB>]

<Bus MSB> is:
<Bus Bit>

<Bus LSB> is:
<Bus Bit>2340

<Bus Bit> is:
<VHDL Integer>

Parameters

<entity id> A <VHDL identifier> giving the name of the
entity.2345

<Bus Definition> Each bus definition describes how a bus is
composed of the cells of other test registers or
buses.

<Bus Name> A <VHDL identifier> that defines the name of
the bus being created.2350

<Bus Width> A <VHDL Integer> that defines the width in bits
of the bus being created. The width of the new
bus must be equal to the sum of the widths of
each of the bus components.

<Bus Component> The bus component names the bits of each test2355
register or bus that is a component of the bus
being defined. In a device entity, the bus
component may not have a bus qualifier,
because all test registers and buses referenced
must come from the device entity (a device has2360
no members).

<Bus Qualifier> The bus qualifier names the member that the
bus bits come from. If necessary, more than
one bus qualifier may be used to search deeper
into a hierarchy of members to locate the bus2365
bits. The first qualifier is the name of a member
of the current module; the next qualifier is a
member of that member's entity, and so forth
until the desired module or device level in the
hierarchy is reached.2370

<Bus Bits> Each set of bits in the bus can be a complete
test register or bus, a one-bit subset of a test
register or bus, or a subset of a test register or
bus including a range of bits.

Revision A HSDL Syntax Specification

PRELIMINARY 54 31-Aug-1992

<Register> A <VHDL identifier> giving the name of a2375
previously defined test register.

<Register Cell> A single cell of a test register is a component of
the bus.

<Register Cell Range> Multiple cells of a test register form a
component of the bus.2380

<Bus Single Bit> A single bit of a bus is a component of the new
bus.

<Bus Bit Range> Multiple cells of a bus form a component of the
new bus.

<Bus MSB> The bit offset of the bus that will be the most2385
significant bit of this component of the new bus.
This need not be the most significant bit of the
bus bit range. If the bus MSB is less than the
bus LSB, the significance of the bits are
reversed in the new bus.2390

<Bus LSB> The bit offset of the bus that will be the least
significant bit of this component of the new bus.
This need not be the least significant bit of the
bus bit range. If the bus MSB is less than the
bus LSB, the significance of the bits are2395
reversed in the new bus.

<Bus Bit> A <VHDL Integer> giving the bit offset in the
bus. 0 indicates the LSB of the bus.

Examples
attribute BUS_COMPOSITION of ttl74bct8374 : entity is2400
 "inputs[8] (BOUNDARY[8,15])," &
 "outputs[8] (BOUNDARY[0, 7])," &
 "aux[2] (BOUNDARY[16,17])," &
 "lfsr[16] (BOUNDARY[0,15])";

attribute BUS_COMPOSITION of My_IC : entity is2405
 "version[4] (idcode[31,28])," &
 "part_number[16] (idcode[27,12])," &
 "manufacturer[11] (idcode[11, 1])";

attribute BUS_COMPOSITION of My_Board : entity is
 "addrbus[32] (u1.output, u2.output, u3.output, u4.output)," &2410
 "databus[32] (u5.a, u6,a, u7.a, u8.a)";

See Also Attribute IDCODE_REGISTER (BSDL), attribute MEMBERS (HSDL modules),
attribute REGISTER_ACCESS (BSDL), attribute REGISTER_COMPOSITION
(HSDL devices), attribute USERCODE_REGISTER (BSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 55 31-Aug-1992

attribute BUS_DESCRIPTION (HSDL)2415

Description This optional "attribute" statement provides descriptions of the buses in an entity.
Any or all of the buses defined in the entity may have a description. The
description should provide enough information to the user so that no additional
documentation is necessary in order to understand the use and meaning of the
bus.2420

Syntax

attribute BUS_DESCRIPTION of <device id> : constant is
 "<Bus Descriptions>";

<Bus Descriptions> is:
<Bus Description>2425
<Bus Description>, <Bus Description>
<Bus Description>,...<Bus Description>

<Bus Description> is:
<Bus Name> ('<Description>')

Parameters2430

<device id> A <VHDL identifier> giving the name of the
entity.

<Bus Name> A <VHDL identifier> giving the name of a
previously defined bus. A bus may not be listed
more than once.2435

<Description> A string providing a description of the use and
meaning of the bus.

Examples
attribute BUS_DESCRIPTION of ttl74bct8374 : entity is
 "inputs ('The eight cells of the Boundary-Scan register " &2440
 "that are connected to the D inputs are combined " &
 "to form the input bus.')," &
 "outputs ('The eight cells of the Boundary-Scan register " &
 "that are connected to the Q outputs are " &
 "combined to form the output bus.')," &2445
 "aux ('The two cells of the Boundary-Scan register " &
 "that are connected to the CLK and OC_NEG pins " &
 "are combined to form the aux bus.')," &
 "lfsr ('The sixteen cells of the Boundary-Scan register " &
 "that are combined during PSA/PRPG operations to " &2450
 "form the Linear Feedback Shift Register.')";

See Also constant BUS_COMPOSITION (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 56 31-Aug-1992

attribute BUS_SYMBOLS (HSDL)

Description This optional "attribute" statement associates a symbol table with a bus. The
TDI or TDI/TDO symbols named in the symbol table can then be shifted into the2455
specified bus, and the TDI/TDO or TDO symbols named in the symbol table can
be used as replacements for bit patterns that are captured and shifted out of the
specified bus. The bus can be controlled symbolically by using names instead of
numbers. Usability is increased because the test engineer no longer needs to
remember the bit patterns, just the names.2460

Syntax

attribute BUS_SYMBOLS of <device id> : entity is
 "<Bus Symbol List>";

<Bus Symbol List> is:
<Bus Symbols>2465
<Bus Symbols>, <Bus Symbols>
<Bus Symbols>,...<Bus Symbols>

<Bus Symbols> is:
<Bus Name> (<Symbol Table Name>)

Parameters2470

<device id> A <VHDL identifier> giving the name of the
entity.

<Bus Symbol List> Each bus of the entity may have one symbol
table associated with it. Neither all the buses
nor all the symbol tables must be listed.2475

<Bus Name> A <VHDL identifier> giving the name of a
previously defined bus to attach a symbol table
to.

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table to attach to the2480
bus. A symbol table may be attached to any
number of buses.

Examples
attribute BUS_SYMBOLS of ttl74bct8374 : entity is
 "aux (AUX_SYMBOLS)";2485

See Also attribute BUS_COMPOSITION (HSDL), attribute SYMBOL_OF_TDI (HSDL),
attribute SYMBOL_OF_TDO (HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 57 31-Aug-1992

attribute CONNECTIONS (HSDL modules)

Description This "attribute" statement describes how the external paths of members are
connected to the paths and devices of the current module. All external paths of2490
all members must be connected to something when they are included in a
module. This improves the diagnostic abilities of the HSDL translator,
preventing unconnected external paths from "slipping through" until the UUT
description is loaded into the test controller.

If an external path is to remain unconnected (for later connection in a higher-2495
level module), it can be connected to a new external path defined in the current
module. The decision to connect the external path can thus be postponed until
the next higher-level module.

Syntax

attribute CONNECTIONS of <module id> : entity is2500
 "<Member Path Table>";

<Member Path Table> is:
<Member Path Entry>
<Member Path Entry>, <Member Path Entry>
<Member Path Entry>,...<Member Path Entry>2505

<Member Path Entry> is:
<Member Name> (<External Path List>)

<External Path List> is:
<External Path Entry>
<External Path Entry>, <External Path Entry>2510
<External Path Entry>,...<External Path Entry>

<External Path Entry> is:
<External Path Name> : <External Path Connection>

<External Path Connection> is:
<Static Path Entry>2515
*

Parameters

<module id> A <VHDL identifier> giving the name of the
entity.

<Member Path Table> A string connecting the external paths of each2520
member to a path or device. Every member
that has external paths that have not already
been connected to a path or device must be
listed here.

<Member Path Entry> A member path entry lists the name of a2525
member and a list of its external paths,
attaching each to a path or device.

<External Path List> An external path list lists each external path and
connects it to a path or device. Every external
path of the member that is not already2530
connected must be listed.

<External Path Entry> An external path entry associates an external
path of the member with a static path, dynamic
path, external path, member, or external path of

Revision A HSDL Syntax Specification

PRELIMINARY 58 31-Aug-1992

a member. The TAP signals of the static path2535
entry are connected to the TAP signals of the
external path. The external path is considered
to be driving the

<External Path Name> A <VHDL Identifier> giving the name of an
existing public external path of the member.2540

<External Path Connection> An external path connection identifies what the
external path of the member is connected to.
An external path may be connected to a static
path, a dynamic path, an external path, a
member, or an external path within a member.2545
These connections model different hardware
configurations that might occur.

Connecting an external path to a device
indicates that the external path was probably a
chip socket.2550

Connecting an external path to a module
indicates that the external path was probably a
daughterboard connector or a backplane
connector.

Connecting an external path to a static path2555
indicates that the member controlling the
external path is probably a device or module
with a secondary scan path. A secondary scan
path is a slave path that can be configured in
and out of the scan path by scanning commands2560
to the master. The Texas Instruments
SN74ACT8997 Scan Path Linker and
SN74ACT8999 Scan Path Selector are
examples of such devices. An example of a
module like this might be a multi-chip module2565
that controls a secondary scan path.

Connecting an external path to a dynamic path
or a member's external path is simply a more
complicated example of connecting an external
path to a static path.2570

Connecting an external path to an external path
defined in the current module is the method for
postponing the connection to a higher-level
module.

An asterisk (*) denotes an external path that is2575
"open". Such an external path is not connected
to any scannable hardware, and thus cannot be
scanned through. The test controller can then
prevent the use of any scan paths including this
external path. This facility is useful for2580
members whose external paths are controlled
by a dynamic path. Examples include the TI
SN74ACT8997 and SN74ACT8999 scan path
linkers and selector that control secondary scan
paths. If an external path of these devices is2585
not connected, the test controller should

Revision A HSDL Syntax Specification

PRELIMINARY 59 31-Aug-1992

disallow the selection of that case in the
dynamic path of the device.

Every external path of every member must be
connected to something. This connection may2590
be a short (an empty static path), something
scannable (a path, member, or member external
path), or nothing at all (an asterisk). The
connection can be accomplished by placing the
member in a STATIC_PATH or2595
DYNAMIC_PATH list, or by listing the member
in the CONNECTIONS attribute.

A member's external path must be connected to
an external path defined in the current module
in order to leave the connection undefined, so2600
that it may be connected in a higher-level
module.

Examples
constant subpath1 : STATIC_PATH := "u1, u2";
constant subpath2 : STATIC_PATH := "u3, u4, u5";2605
-- Attach subpath 1/2 to secondary scan path 1/3 of SN74ACT8997
-- Leave secondary scan path 2/4 permanently unconnected
attribute CONNECTIONS of My_Board : entity is
 "u9 (ssp1:subpath1, ssp2:*, ssp3:subpath2, ssp4:*)";

See Also constant DYNAMIC_PATH (HSDL modules), constant EXTERNAL_PATH2610
(HSDL modules), constant STATIC_PATH (HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 60 31-Aug-1992

attribute CONSTRAINTS (HSDL)

Description This optional "attribute" statement describes illegal conditions (constraints) of the
hardware, conditions that the test controller is not allowed to create by scanning
bit patterns into the hardware. These constraints usually mirror those that are2615
prevented by design in the normal, functional mode of the hardware, but which
can be easily circumvented using scan.

An example of a typical constraint is preventing more than one driver at a time
from driving onto a bus. Usually, the hardware is specifically designed to
prevent this occurrence. However, since boundary scan can take over the2620
operation of the hardware, the hardware design that prevented two drivers from
driving onto the bus is now overridden by scan. Constraints can be coded into
the HSDL entity to repeat the same constraints designed into the hardware, thus
preventing damage.

Constraints are written in the form of logical expressions that must evaluate to2625
FALSE before a scan operation is allowed to take place. Each constraint is
evaluated against the data to be shifted in, and if any of the constraints is TRUE,
the test controller stops scanning and informs the operator that a constraint has
been violated. The operation in progress is aborted, and scanning is forbidden
until once again all constraints evaluate to FALSE.2630

Logical expressions are used in preference to illegal bit patterns, because the bit
patterns could be quite lengthy and redundant. If a specific bit pattern is
considered illegal, it can be checked for with an expression. Thus, expressions
are more "expressive".

Constraints can appear in both device and module entities. Module constraints2635
are often related to bus drivers, and tend to prevent conflicts between devices.
Device constraints may take the form of values that should not be scanned into
certain test registers or specific combinations of values in different test registers.
Private instructions represent a form of constraint, in that a private instruction is
a bit pattern that can never be scanned into the instruction register.2640

A constraint can use the operators shown in the following table. In many ways,
these operators are like their counterparts in VHDL. The precedence,
associativity, and meaning is the same. The operand values and their results
differ, because the values in HSDL can include don't-care bits.

2645

Revision A HSDL Syntax Specification

PRELIMINARY 61 31-Aug-1992

Operators

Operator Rank Description
a AND b 6 Logical AND
a OR b 6 Logical Inclusive OR

a XOR b 6 Logical Exclusive OR
a NAND b 6 Logical Negated AND
a NOR b 6 Logical Negated OR

a = b 5 Relational Equality
a <> b 5 Relational Inequality
a < b 5 Relational Less Than
a > b 5 Relational Greater Than

a <= b 5 Relational Less Than or Equal
a >= b 5 Relational Greater Than or Equal
a + b 4 Arithmetic Addition
a - b 4 Arithmetic Subtraction
- a 3 Arithmetic Negation

a * b 2 Arithmetic Multiplication
a / b 2 Arithmetic Division

NOT a 1 Logical Negation

Operators fall into the following groups: logical, relational, or arithmetic, and are
shown in order of increasing precedence. Precedence defines the order of
evaluation of operators. Operators with higher precedence are evaluated before2650
operators with lower precedence. In the table, the logical negation operator
(NOT) has the highest precedence with rank 1, and the other logical operators
have the lowest precedence with rank 6. Most operators at the same
precedence level evaluate their operands left-to-right. The exceptions are the
logical negation (NOT) and arithmetic negation (-) operators, which are2655
evaluated right-to-left. Parentheses can be used to override the usual order of
evaluation.

An associative operator is one where the left and right operands can be
exchanged without changing the result. The associative operators are identified
in the discussion of each operator.2660

The logical operators are AND, OR, XOR, NAND, NOR, and NOT. All but NOT
are associative operators. The logical operators are applied to each bit of the
operands to determine the result. Their results are shown in the following tables.

Logical Operators

2665
a b a AND b a OR b a XOR b a NAND b a NOR b
1 1 1 1 0 0 0
1 0 0 1 1 1 0
0 0 0 0 0 1 1

a NOT a
1 0
0 1

The relational operators are =, <>, <, >, <=, >=. Only = and <> are associative
operators. The relational operators are applied to all bits of the operand to

Revision A HSDL Syntax Specification

PRELIMINARY 62 31-Aug-1992

determine the result. The results of applying these operators to single bits are2670
shown in the following tables.

Relational Operators

a b a = b a <> b
1 1 1 0
1 0 0 1
0 0 1 0

a b a < b a > b a <= b a >= b
1 1 0 0 1 1
1 0 0 1 0 1
0 1 1 0 1 0
0 0 0 0 1 1

2675

The arithmetic operators are *, /, +, and -. Only multiplication, addition, and
subtraction are associative operators. The arithmetic operators are applied to all
bits of the operand to determine the result.

Operands are implicitly extended with leading zeroes during constraint
evaluation, if necessary. The maximum number of bits that can be supported in2680
the operands of a constraint is implementation-defined, and may vary depending
on the constraint operator being applied.

If the final result of constraint evaluation contains any 1 bits, the result is true
and the constraint has been violated.

If the value to be shifted in to a test register, bus, or port contains don't-care or2685
unknown bits, and a constraint refers to that test register, bus, or port, the result
of constraint evaluation is true and the constraint has been violated. The
reasoning is that a constraint on a test register means that the contents of that
test register are cared about; therefore don't-care and unknown bits in the value
to shift into the test register are invalid.2690

Syntax

attribute CONSTRAINTS of <entity id> : entity is
 "<Constraint List>";

<Constraint List> is:
<Constraint>2695
<Constraint>, <Constraint>
<Constraint>,...<Constraint>

<Constraint> is:
<Constraint Name> (<Constraint Expression>)

<Constraint Name> is:2700
<VHDL identifier>

<Constraint Expression> is:
<Relational Expression>
<Relational Expression> AND <Constraint Expression>
<Relational Expression> OR <Constraint Expression>2705
<Relational Expression> XOR <Constraint Expression>
<Relational Expression> NAND <Constraint Expression>
<RelationalExpression> NOR <Constraint Expression>

Revision A HSDL Syntax Specification

PRELIMINARY 63 31-Aug-1992

<Relational Expression> is:
<Negative Expression>2710
<Negative Expression> = <Negative Expression>
<Negative Expression> <> <Negative Expression>
<Negative Expression> < <Negative Expression>
<Negative Expression> > <Negative Expression>
<Negative Expression> <= <Negative Expression>2715
<Negative Expression> >= <Negative Expression>

<Simple Expression> is:
<Negative Expression>
<Negative Expression> + <Simple Expression>
<Negative Expression> - <Simple Expression>2720

<Negative Expression> is:
<Term>
- <Term>

<Term> is:
<Factor> * <Term>2725
<Factor> / <Term>

<Factor> is:
<Primary Expression>
NOT <Primary Expression>

<Primary Expression> is:2730
<Constraint Item>
(<Constraint Expression>)

<Constraint Item> is:
<Bus Component>
<Port Component>2735
<Constraint Value>

<Port Component> is:
<Port Qualifier> . <Port Bits>
<Port Bits>

<Port Qualifier> is:2740
<Member Name>
<Member Name> . <Port Qualifier>

<Port Bits> is:
<Port Name>
<Port Single Bit>2745
<Port Bit Range>

<Port Single Bit> is:
<Port Name> [<Port Bit>]

<Port Bit Range> is:
<Port Name> [<Port MSB>, <Port LSB>]2750

<Port MSB> is:
<Port Bit>

<Port LSB> is:
<Port Bit>

Revision A HSDL Syntax Specification

PRELIMINARY 64 31-Aug-1992

<Port Bit> is:2755
<VHDL Integer>

<Constraint Value> is:
<Pattern>
<Symbol Name>

Parameters2760

<entity id> A <VHDL identifier> giving the name of the
entity.

<Constraint Name> A <VHDL identifier> defining the name of a new
constraint. This name is used by the test
controller when it informs the operator that a2765
constraint has been violated.

<Constraint Expression> A logical expression that may include logical
operators to check combinations of values.
When the expression evaluates to TRUE, the
test controller halts and informs the operator2770
that the constraint with the specified name has
been violated.

<Relational Expression> An expression that checks for equality or
ordering of a constraint item and a constraint
value.2775

<Simple Expression> An expression that adds or subtracts a
constraint item and a constraint value.

<Negative Expression> An expression that inverts the sign of a
constraint item or a constraint value.

<Term> An expression that multiplies or divides a2780
constraint item and a constraint value.

<Factor> An expression that inverts the bits of a
constraint item or a constraint value.

<Primary Expression> A constraint item2785
specifying scan cells to check. The primary
expression may also be a parenthesized
constraint expression, so that the usual
evaluation order may be overridden.

<Constraint Item> The constraint item specifies which bits are to2790
be checked before shifting in, and can specify
all or part of a test register, bus, or port. The
constraint item may be contained in a member.

<Bus Component> The bus component names the bits of a test
register or bus that is checked by the constraint2795
expression. In a device entity, the bus
component may not have a bus qualifier,
because all test registers and buses referenced
must come from the device entity (a device has
no members). See attribute2800
BUS_COMPOSITION (HSDL) for more details.

Revision A HSDL Syntax Specification

PRELIMINARY 65 31-Aug-1992

<Port Component> The port component names the bits of a port
that is checked by the constraint expression. In
a device entity, the port component may not
have a port qualifier, because all ports2805
referenced must come from the device entity (a
device has no members). A port defined in a
module may not be checked by a constraint
expression, because module entities do not
define the connections of ports to scan cells.2810

<Port Qualifier> The port qualifier names the device member
that the port bits come from. If necessary, more
than one port qualifier may be used to search
deeper into a hierarchy of members to locate
the port bits. The first qualifier is the name of a2815
member of the current module; the next qualifier
is a member of that member's entity, and so
forth until the device level in the hierarchy is
reached.

<Port Bits> Each set of bits in the port can be a complete2820
port, a one-bit subset of a port, or a subset of a
port including a range of bits.

<Port Single Bit> A single bit of a port is checked.

<Port Bit Range> Multiple cells of a port are checked.

<Port MSB> The bit offset of the port that is the most2825
significant bit checked. This need not be the
most significant bit of the port bit range. If the
port MSB is less than the port LSB, the
significance of the bits is reversed.

<Port LSB> The bit offset of the port that is the least2830
significant bit checked. This need not be the
least significant bit of the port bit range. If the
port MSB is less than the port LSB, the
significance of the bits is reversed.

<Port Bit> A <VHDL Integer> giving the bit offset in the2835
port. 0 indicates the LSB of the port.

<Constraint Value> A pattern or symbol name that defines the value
to check against the value to be shifted into the
test register, bus, or port. The pattern may
include don't-care bits (X). The symbol name2840
must be contained in the symbol table attached
to the <Constraint Item>, and must be a TDI
symbol or a TDI/TDO symbol.

Examples
attribute CONSTRAINTS of My_Board : entity is2845
 "bus_conflict (u1.enable = ACTIVE AND u2.enable = ACTIVE)," &
 "backplane_conflict (u7.OC_NEG + u8.OC_NEG + u9.OC_NEG < 2)";

See Also attribute INSTRUCTION_PRIVATE (BSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 66 31-Aug-1992

attribute CONSTRAINT_DESCRIPTION (HSDL)

Description This optional "attribute" statement provides descriptions of the constraints in an2850
entity. Any or all of the constraints defined in the entity may have a description.
The description should provide enough information so that the operator can
understand the cause and reason of the constraint violation and how to correct it.

Syntax

attribute CONSTRAINT_DESCRIPTION of <entity id> : entity is2855
 "<Constraint Descriptions>";

<Constraint Descriptions> is:
<Constraint Description>
<Constraint Description>, <Constraint Description>
<Constraint Description>,...<Constraint Description>2860

<Constraint Description> is:
<Constraint Name> ('<Description>')

Parameters

<entity id> A <VHDL identifier> giving the name of the
entity.2865

<Constraint Name> A <VHDL identifier> giving the name of a
previously defined constraint. A constraint may
not be listed more than once.

<Description> A string providing a description of the reason for
the constraint, the nature of the constraint2870
violation, and how to correct the violation. The
test controller displays the constraint
description, if available, along with the
constraint name when a constraint is violated.

Examples2875
attribute CONSTRAINT_DESCRIPTION of My_Board : entity is
 "bus_conflict ('Drivers u1 and u2 are both enabled to " &
 "drive the data bus. Disable one of the " &
 "drivers and resume testing.')";

See Also attribute CONSTRAINTS (HSDL).2880

Revision A HSDL Syntax Specification

PRELIMINARY 67 31-Aug-1992

attribute DEVICE_DESCRIPTION (HSDL devices)

Description This optional "attribute" statement may appear following the "use" statements,
and can be used to describe the type of the device itself. This description can
be used to partially meet Documentation Requirement 12.3.1.a of IEEE Std
1149.1-1990.2885

Syntax

attribute DEVICE_DESCRIPTION of <device id> : entity is
 "<Device Description>";

Parameters

<device id> A <VHDL identifier> giving the name of the2890
entity.

<Device Description> A text string describing the device. The string
may be arbitrarily long. No specific meaning is
attached to its contents. The string should
contain information describing the overall2895
operation of the device, and may be used by the
engineer to gain an understanding of the
module. Tools may display this string when
queried about the device.

Examples2900
attribute DEVICE_DESCRIPTION of My_IC : entity is
 "My_IC is a two-bit adder that computes the sum " &
 "of A and B on the rising edge of CLK.";

See Also attribute MODULE_DESCRIPTION (HSDL modules)

Revision A HSDL Syntax Specification

PRELIMINARY 68 31-Aug-1992

attribute DYNAMIC_PATH_RESET (HSDL modules)2905

Description This "attribute" statement describes what happens to a dynamic path when the
UUT passes through the Test-Logic-Reset state of the TAP state diagram. The
state of the hardware controlling the dynamic path may be altered when this
happens. If the hardware controlling the dynamic path happens to be a
scannable device, the device will be placed in a normal mode and the2910
configuration of the dynamic path will change.

If the dynamic path does not change state when the UUT passes through Test-
Logic-Reset, a DYNAMIC_PATH_RESET attribute is not needed.

Syntax

attribute DYNAMIC_PATH_RESET of <Dynamic Path Name> : constant is2915
 "<Dynamic Case Value>";

Parameters

<Dynamic Path Name> A <VHDL identifier> giving the name of a
previously defined dynamic path.

<Dynamic Case Value> A <VHDL Integer> specifying which case value2920
of the dynamic path becomes active when the
UUT is reset. The integer must match one of
the dynamic case values of the dynamic path
named by this statement. This case value also
specifies the initial state of the dynamic path,2925
because the UUT is in Test-Logic-Reset state on
power-up.

Examples
attribute DYNAMIC_PATH_RESET of c40switch : constant is "1";

See Also attribute REGISTER_RESET (HSDL devices), constant DYNAMIC_PATH2930
(HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 69 31-Aug-1992

attribute INSTRUCTION_DESCRIPTION (HSDL devices)

Description This optional "attribute" statement describes the function and purpose of the
instruction opcodes of a device. The description can be used to meet the IEEE
Std. 1149.1-1990 Documentation Requirement 12.3.1.b.ii. It should describe the2935
operation of the instruction, any initialization needed, test registers altered,
algorithms employed, and so forth. The description should be complete enough
to use the instruction without additional documentation.

An instruction description is not required for the predefined instructions in IEEE
Std 1149.1-1990 and Supplement A. These include SAMPLE/PRELOAD,2940
EXTEST, INTEST, BYPASS, RUNBIST, CLAMP, and HIGHZ. An appropriate
description is created for each of these instructions if no description is defined in
the entity.

If the instructions INTEST and RUNBIST are available in the device, a
description should be supplied by the user in lieu of the one created by the2945
HSDL translator. The INTEST and RUNBIST instructions have many design-
specific parameters that cannot be adequately described in HSDL.

Syntax

attribute INSTRUCTION_DESCRIPTION of <device id> : entity is
 "<Instruction Description Table>";2950

<Instruction Description Table> is:
<Instruction Description Entry>
<Instruction Description Entry>, <Instruction Description Entry>
<Instruction Description Entry>,...<Instruction Description Entry>

<Instruction Description Entry> is:2955
<Opcode Name> ('<Instruction Description>')

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.

<Instruction Description Table> This parameter is a string containing instruction2960
opcode names and associated descriptions.

<Instruction Description Entry> Each instruction description entry associates an
instruction opcode with a description.

<Opcode Name> The opcode name gives the name of an
instruction opcode previously defined in the2965
INSTRUCTION_OPCODE attribute. An opcode
name need not appear in the instruction
description, but each opcode name may only
appear once.

<Instruction Description> A string describing the operation of the2970
associated opcode. The string may be
arbitrarily long. No specific meaning is attached
to its contents. The string should contain
information describing the overall operation of
the module, and may be used by the engineer to2975
gain an understanding of the module. Tools
may display this string when queried about the
module.

Revision A HSDL Syntax Specification

PRELIMINARY 70 31-Aug-1992

Examples
attribute INSTRUCTION_DESCRIPTION of My_IC : entity is2980
 "EXTEST ('Select Boundary-Scan register in test mode; " &
 "control device inputs and outputs using the " &
 "contents of the Boundary.')," &
 "TRIBYP ('Select BYPASS register in test mode; " &
 "control device outputs to high-impedance.')" ;2985

See Also attribute INSTRUCTION_DISABLE (BSDL), attribute INSTRUCTION_GUARD
(BSDL), attribute INSTRUCTION_NORMAL (HSDL), attribute
INSTRUCTION_OPCODE (BSDL), attribute INSTRUCTION_TEST (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 71 31-Aug-1992

attribute INSTRUCTION_NORMAL (HSDL devices)

Description This optional "attribute" statement identifies instruction opcodes of the device2990
that do not affect the normal operation of the device in any way. The device
continues to operate as if the test circuitry was inactive.

Instruction opcodes can be classified in three ways: normal-mode, test-mode,
and unknown. A normal-mode instruction is one that does not affect the normal
operation of the device, and is identified by listing it in the2995
INSTRUCTION_NORMAL attribute. A test-mode instruction is one that affects
the normal operation in some way by placing the device into a test mode, and is
identified by listing it in the INSTRUCTION_TEST attribute. An instruction
whose effects are not known cannot be listed in either attribute, so it is
"unknown" whether the device operates in test or normal mode when it is loaded.3000

The instructions BYPASS, SAMPLE, IDCODE, and USERCODE, defined by
1149.1, must be normal-mode instructions and do not need to be listed in the
INSTRUCTION_NORMAL attribute.

Syntax

attribute INSTRUCTION_NORMAL of <device id> : entity is3005
 "<Instruction List>";

<Instruction List> is:
<Instruction Name>
<Instruction Name>,...<Instruction Name>

Parameters3010

<device id> A <VHDL identifier> giving the name of the
entity.

<Instruction Name> A <VHDL identifier> giving the name of a
previously defined instruction opcode which is
classified as a normal-mode instruction. An3015
instruction opcode cannot appear more than
once. An instruction opcode cannot appear in
both the INSTRUCTION_NORMAL attribute and
the INSTRUCTION_TEST attribute.

Examples3020
attribute INSTRUCTION_NORMAL of ttl74bct8374 : entity is
 "BYPASS, SAMPLE, READBN, CELLTST, SCANCN";

See Also attribute INSTRUCTION_OPCODE (BSDL), attribute INSTRUCTION_TEST
(HSDL devices).

Revision A HSDL Syntax Specification

PRELIMINARY 72 31-Aug-1992

attribute INSTRUCTION_TEST (HSDL devices)3025

Description This optional "attribute" statement identifies instruction opcodes of the device
that affect the normal operation of the device in some way. All or part of the
normal operation of the device is suspended and replaced with a test operation.

Instruction opcodes can be classified in three ways: normal-mode, test-mode,
and unknown. A normal-mode instruction is one that does not affect the normal3030
operation of the device, and is identified by listing it in the
INSTRUCTION_NORMAL attribute. A test-mode instruction is one that affects
the normal operation in some way by placing the device into a test mode, and is
identified by listing it in the INSTRUCTION_TEST attribute. An instruction
whose effects are not known cannot be listed in either attribute, so it is3035
"unknown" whether the device operates in test or normal mode when it is loaded.

Whether a test-mode instruction affects the device output pins or affects the
inputs to the device system logic is unspecified; in other words, the exact nature
of the test mode is not described. A test-mode instruction is simply one that
alters the device in some way.3040

The instructions EXTEST, INTEST, RUNBIST, HIGHZ, and CLAMP, defined by
1149.1, must be test-mode instructions and do not need to be listed in the
INSTRUCTION_TEST attribute. Note that although 1149.1 does not specify the
exact nature of system logic inputs and device outputs for these instructions, it
does specify that they alter the normal operation of the device.3045

The instructions listed in the INSTRUCTION_DISABLE and
INSTRUCTION_GUARD attributes must be test-mode instructions, but do not
need to be listed in the INSTRUCTION_TEST attribute.

Syntax

attribute INSTRUCTION_TEST of <device id> : entity is3050
 "<Instruction List>";

<Instruction List> is:
<Instruction Name>
<Instruction Name>,...<Instruction Name>

Parameters3055

<device id> A <VHDL identifier> giving the name of the
entity.

<Instruction Name> A <VHDL identifier> giving the name of a
previously defined instruction opcode which is
classified as a test-mode instruction. An3060
instruction opcode cannot appear more than
once. An instruction opcode may not appear in
both the INSTRUCTION_NORMAL attribute and
the INSTRUCTION_TEST attribute.

Examples3065
attribute INSTRUCTION_TEST of ttl74bct8374 : entity is
 "EXTEST, INTEST, TRIBYP, SETBYP," &
 "RUNT, READBT, TOPHIP, SCANCT" ;

See Also attribute INSTRUCTION_DISABLE (BSDL), attribute INSTRUCTION_GUARD
(BSDL), attribute INSTRUCTION_NORMAL (HSDL devices), attribute3070
INSTRUCTION_OPCODE (BSDL)

Revision A HSDL Syntax Specification

PRELIMINARY 73 31-Aug-1992

attribute MEMBERS (HSDL modules)

Description This optional "attribute" statement identifies the members of the module.
Members are the devices and submodules that are wired together to create the
module. Each member has a unique name and is a certain type of device or3075
module using a specific packaging option.

A module does not have to contain member devices or modules. One example
of such a module is a dummy board that simply contains a short from TDI to
TDO. Another, more realistic example is a system backplane that contains no
scannable devices, only scannable card slots.3080

Syntax

attribute MEMBERS of <module id> : entity is
 "<Member Table>";

<Member Table> is:
<Member Entry>3085
<Member Entry>, <Member Entry>
<Member Entry>, ... <Member Entry>

<Member Entry> is:
<Member Name> (<Entity Name> <Package Name>)

Parameters3090

<module id> A <VHDL identifier> giving the name of the
entity.

<Member Table> This parameter is a string containing member
definitions.

<Member Entry> Each Member Entry parameter defines one of3095
the members of the module, its name, its type
(entity), and its package.

<Member Name> A <VHDL identifier> defining a unique, user-
selected name for the member.

<Entity Name> The name of an existing entity, described in3100
another HSDL or BSDL file.

<Package Name> The name of a package defined as a
PIN_MAP_STRING constant in the entity given
by Entity Name.

Examples3105
attribute MEMBERS of My_Board : entity is
 "u1 (sn74bct8245, FK_PACKAGE)," &
 "u2 (sn74bct8240, DW_PACKAGE) " ;

See Also entity (BSDL), constant-(entity) (BSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 74 31-Aug-1992

attribute MEMBER_DESCRIPTION (HSDL modules)3110

Description This optional "attribute" statement can be used to describe the purpose of each
of the members of a module.

Syntax

attribute MEMBER_DESCRIPTION of <module id> : entity is
 "<Member Description Table>";3115

<Member Description Table> is:
<Member Description Entry>
<Member Description Entry>, <Member Description Entry>
<Member Description Entry>,...<Member Description Entry>

<Member Description Entry> is:3120
<Member Name> ('<Member Description>')

Parameters

<module id> A <VHDL identifier> giving the name of the
entity.

<Member Description Table> This parameter is a string that associates a3125
description with one or more of the module
members.

<Member Description Entry> Each Member Description Entry gives the name
of a member and associates a comment with
that member.3130

<Member Name> A <VHDL identifier> that gives the name of one
of the members defined in the MEMBERS
attribute. Each Member Name may appear no
more than once in the <Member Description
Table>. Not every member needs to have a3135
description associated with it.

<Member Description> A text string describing the member. The string
may be arbitrarily long. No specific meaning is
attached to its contents. The string should
contain information describing the purpose of3140
the member in the module, and may be used by
the engineer to gain an understanding of the
module. Tools may display this string when
queried about the member.

Examples3145
attribute MEMBER_DESCRIPTION of My_Board : entity is
 "u1 ('The 245 in U1 is used as a backplane driver.')," &
 "u2 ('The 240 in U2 inverts the panel switches.')" ;

See Also attribute DEVICE_DESCRIPTION (HSDL devices), attribute MEMBERS (HSDL
modules), attribute MODULE_DESCRIPTION (HSDL modules).3150

Revision A HSDL Syntax Specification

PRELIMINARY 75 31-Aug-1992

attribute MODULE_DESCRIPTION (HSDL modules)

Description This optional "attribute" statement may appear following the "use" statements,
and can be used to describe the type of the module itself. This description can
be used to partially meet Documentation Requirement 12.3.1.a of IEEE Std
1149.1-1990.3155

Syntax

attribute MODULE_DESCRIPTION of <module id> : entity is
 "<Module Description>";

Parameters

<module id> A <VHDL identifier> giving the name of the3160
entity.

<Module Description> A text string describing the module. The string
may be arbitrarily long. No specific meaning is
attached to its contents. The string should
contain information describing the overall3165
operation of the module, and may be used by
the engineer to gain an understanding of the
module. Tools may display this string when
queried about the module.

Examples3170
attribute MODULE_DESCRIPTION of My_Board : entity is
 "My_Board contains four megabytes of RAM, with a " &
 "32-bit address bus and 32-bit data bus.";

See Also attribute DEVICE_DESCRIPTION (HSDL devices).

Revision A HSDL Syntax Specification

PRELIMINARY 76 31-Aug-1992

attribute PATH_DESCRIPTION (HSDL modules)3175

Description This optional "attribute" statement can be used to describe the purpose and
function of each of the paths of the module. A separate path description is used
to describe each of the paths of the module.

Syntax

attribute PATH_DESCRIPTION of <Path Name> : constant is3180
 "<Path Description>";

<Path Name> is:
<Static Path Name>
<Dynamic Path Name>
<External Path Name>3185

Parameters

<Path Name> A <VHDL identifier> giving the name of one of
the static, dynamic, or external paths defined in
the module. Each path can have at most one
description attached to it.3190

<Path Description> A string describing the purpose and function of
the path, and may be used by the engineer to
gain an understanding of the module.. The
string may be arbitrarily long. No specific
meaning is attached to its contents. Tools may3195
display this string when queried about the path.

Examples
attribute PATH_DESCRIPTION of J1 : constant is
 "J1 is the scan test connector for this board.";

attribute PATH_DESCRIPTION of short : constant is3200
 "Short is an empty static path, representing a wire " &
 "between TDI and TDO.";

attribute PATH_DESCRIPTION of dpath : constant is
 "The dynamic path dpath is used to remove the C40 from " &
 "the scan path if the device is not mounted on the board.";3205

See Also constant DYNAMIC_PATH (HSDL modules), constant EXTERNAL_PATH
(HSDL modules), constant STATIC_PATH (HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 77 31-Aug-1992

attribute PORT_DESCRIPTION (HSDL)

Description This optional "attribute" statement can be used to describe the purpose and
function of each of the ports of the entity (device or module). A separate port3210
description is used to describe each of the ports of the entity.

A port description is not required for the scan ports of the entity. Scan ports are
those identified in the TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK,
TAP_SCAN_MODE, and TAP_SCAN_RESET attributes. An appropriate
description is created for each of the scan ports if none is defined in the entity.3215

Syntax

attribute PORT_DESCRIPTION of <Port Name> : signal is
 "<Port Description>";

Parameters

<Port Name> A <VHDL identifier> giving the name of one of3220
the ports.

<Port Description> A string describing the purpose and function of
the port. The string should describe the
functional operation of the port, not the test
operation. The string may be arbitrarily long.3225
No specific meaning is attached to its contents.
The string should contain information describing
the overall operation of the module, and may be
used by the engineer to gain an understanding
of the module. Tools may display this string3230
when queried about the module.

Examples
attribute PORT_DESCRIPTION of Q : signal is
 "Eight-bit output bus of the device. All outputs can be " &
 "set to high-impedance by placing a 1 on the OC_NEG pin. " &3235
 "All outputs can be updated with the values on the input " &
 "bus D on a positive transition of CLK.";

See Also attribute TAP_SCAN_CLOCK (BSDL), attribute TAP_SCAN_IN (BSDL), attribute
TAP_SCAN_MODE (BSDL), attribute TAP_SCAN_OUT (BSDL), attribute
TAP_SCAN_RESET (BSDL), port (BSDL).3240

Revision A HSDL Syntax Specification

PRELIMINARY 78 31-Aug-1992

attribute REGISTER_CAPTURE (HSDL devices)

Description This optional "attribute" statement describes the possible values that a test
register of a device can capture, along with a description and an indication of
whether each value represents a pass or failure value. This attaches
rudimentary diagnostic ability to a test register and can be useful for test3245
registers that capture a status value. The BSDL attribute
INSTRUCTION_CAPTURE provides this ability for the instruction register.

Values captured by a test register that are not listed in the
REGISTER_CAPTURE attribute are considered don't-care values; that is, they
are neither pass nor failure values.3250

Syntax

attribute REGISTER_CAPTURE of <device id> : entity is
 "<Register Capture List>";

<Register Capture List> is:
<Register Capture>3255
<Register Capture>, <Register Capture>
<Register Capture>,...<Register Capture>

<Register Capture> is:
<Register> (<Capture Value> , <Pass Fail>)
<Register> (<Capture Value> , <Pass Fail> , '<Capture Description>')3260

<Capture Value> is:
<Pattern>
<Symbol Name>

<Pass Fail> is:
PASS3265
FAIL

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.

<Register Capture List> A string describing the capture values of each3270
test register. A test register may appear more
than once in the list, to describe all pass and fail
values.

<Register> A <VHDL identifier> giving the name of a
previously defined test register.3275

<Capture Value> A value captured by the test register.
Ambiguous values are not allowed. Ambiguous
values are values containing don't-care bits
such that two different values could represent
the same binary pattern. In this case, ambiguity3280
could arise from two conflicting patterns, or from
a pattern and a symbol representing the same
value. Undefined capture values for a test
register are assumed to be Fail values.

<Pattern> A bit pattern, optionally containing Xs to3285
represent don't-care bits, that is captured by the

Revision A HSDL Syntax Specification

PRELIMINARY 79 31-Aug-1992

test register. The same bit pattern may not
appear twice in the capture list.

<Symbol Name> A symbol name representing a value that is
captured by the test register. The symbol must3290
be a TDI/TDO symbol or a TDO symbol. The
same symbol name may not appear twice in the
capture list.

<Pass Fail> A <VHDL identifier> describing whether the
capture value is considered acceptable (PASS)3295
or unacceptable (FAIL).

<Capture Description> A string describing the meaning of the capture
value. For example, if a specific bit of the
capture value represents the success or failure
of power-up BIST, identify the bit. Two different3300
capture values would be created for this case:
one that is a Pass value and another that is a
Fail value. The test controller can use this
string to describe the capture result.

Examples3305
attribute REGISTER_CAPTURE of My_IC : entity is
 "BYPASS (0, pass, 'The BYPASS register is working.')," &
 "BYPASS (1, fail, 'The BYPASS register is broken.')";

See Also attribute INSTRUCTION_CAPTURE (BSDL), attribute REGISTER_ACCESS
(BSDL), attribute SYMBOL_OF_TDI (HSDL), attribute SYMBOL_OF_TDO3310
(HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 80 31-Aug-1992

attribute REGISTER_COMPOSITION (HSDL devices)

Description This optional "attribute" statement describes test registers that are composed of
portions of other test registers. Even though IEEE Std 1149.1-1990 permits the
construction of a test register that is the concatenation of other test registers,3315
BSDL cannot describe the new test register except as a completely new and
separate register, sharing no cells with its component test registers. This can
cause data-integrity problems for the test controller.

Consider the example shown here.

A BTDI TDO

BOUNDARY
3320

In this design, the boundary-scan register is a concatenation of two other
registers, A and B. The instruction UseB selects only the B register for a DR-
Scan operation. No instruction selects only the A register because the hardware
design does not allow it. If the test controller loads a UseB instruction, scans
through B, and then loads EXTEST, it may not correctly understand what is3325
currently loaded into the boundary-scan register if the boundary-scan register is
not described as a concatenation of A and B. This would lead to incorrect
results in the best case, and seriously damaged hardware in the worst.

The boundary-scan register above could be described two different ways:
BOUNDARY is a concatenation of A and B.3330
B is a subset of the cells of BOUNDARY.

To avoid introducing more names for test registers that cannot be scanned
through separately (like register A shown above), the
REGISTER_COMPOSITION attribute works from the second perspective.
Instead of describing the BOUNDARY as a concatenation of A and B, test3335
register B is described as a subset of the cells of BOUNDARY. In certain
hardware designs, both A and B could be made scannable, so the BOUNDARY
could be described as a concatenation of A and B.

The decision as to which way to describe concatenated registers is based on the
hardware design and how it is described in BSDL. The only way to name a test3340
register is to define it in the REGISTER_ACCESS attribute along with the
instructions that select it. If the test register has no instructions (like register A
above), it cannot be named. Thus register B must be described as a subset of
BOUNDARY.

Syntax3345

attribute REGISTER_COMPOSITION of <device id> : entity is
 "<Composition Table>";

<Composition Table> is:
<Composition Entry>
<Composition Entry>, <Composition Entry>3350
<Composition Entry>,...<Composition Entry>

<Composition Entry> is:
<Concatenated Register> (<Composition List>)

Revision A HSDL Syntax Specification

PRELIMINARY 81 31-Aug-1992

<Concatenated Register> is:
<Register>3355

<Composition List> is:
<Composition>
<Composition>, <Composition>
<Composition>,...<Composition>

<Composition> is:3360
<Register>
<Register Cell>
<Register Cell Range>

<Register Cell> is:
<Register> [<Register Bit>]3365

<Register Cell Range> is:
<Register> [<Register MSB>, <Register LSB>]

<Register MSB> is:
<Register Bit>

<Register LSB> is:3370
<Register Bit>

<Register Bit> is:
<VHDL Integer>

Parameters

<device id> A <VHDL identifier> giving the name of the3375
entity.

<Composition Entry> Each composition entry describes how a
concatenated test register is composed of the
cells of other test registers. The instruction
register may not be composed of other test3380
registers, nor may any test register be
composed of parts of it.

<Concatenated Register> A <VHDL identifier> giving the name of a test
register previously declared in the
REGISTER_ACCESS attribute. The predefined3385
test registers BOUNDARY, BYPASS, and
IDCODE can also be used. A test register
cannot both be composed of and a part of
another test register; i.e. A can be composed of
B or B can be composed of A, but not both.3390

<Composition List> The composition list defines which cells of which
test registers are concatenated in what order to
form the concatenated test register. The
compositions are listed with the most significant
composition as the first and the least significant3395
composition as the last (MSB-to-LSB ordering).
A specific cell (bit of a test register) may not
occur more than once in a composition
(otherwise a circular test register is created).

<Composition> Each component of a concatenated register can3400
be a complete test register, a one-cell subset of

Revision A HSDL Syntax Specification

PRELIMINARY 82 31-Aug-1992

a test register, or a subset of a test register
including a range of cells.

<Register Cell> A single cell of the test register is a component
of the concatenated register.3405

<Register Cell Range> Multiple cells of the test register form a
component of the concatenated register.

<Register MSB> The register bit offset of the cell that will be the
most significant bit of this component of the
concatenated register. This need not be the3410
most significant bit of the register cell range. If
the register MSB is less than the register LSB,
the significance of the cells is reversed in the
concatenated register.

<Register LSB> The register bit offset of the cell that will be the3415
least significant bit of this component of the
concatenated register. This need not be the
least significant bit of the register cell range. If
the register MSB is less than the register LSB,
the significance of the cells is reversed in the3420
concatenated register.

<Register Bit> A <VHDL Integer> giving the cell offset in the
test register. 0 indicates the cell of the test
register closest to its TDO output.

Examples3425
attribute REGISTER_ACCESS of My_IC : entity is
 "B[5] (UseB)";
attribute REGISTER_COMPOSITION of My_IC : entity is
 "B (BOUNDARY[4,0])";

See Also attribute BUS_COMPOSITION (HSDL), attribute REGISTER_ACCESS (BSDL).3430

Revision A HSDL Syntax Specification

PRELIMINARY 83 31-Aug-1992

attribute REGISTER_DESCRIPTION (HSDL devices)

Description This optional "attribute" statement provides descriptions of the test registers in a
device. Any or all of the test registers defined in the device may have a
description. The description should provide enough information to the user so
that no additional documentation is necessary in order to understand the use and3435
meaning of the test register.

Syntax

attribute REGISTER_DESCRIPTION of <device id> : constant is
 "<Register Descriptions>";

<Register Descriptions> is:3440
<Register Description>
<Register Description>, <Register Description>
<Register Description>,...<Register Description>

<Register Description> is:
<Register> ('<Description>')3445

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.

<Register> A <VHDL identifier> giving the name of a
previously defined test register. A test register3450
may not be listed more than once.

<Description> A string providing a description of the use and
meaning of the test register. The string should
be descriptive enough to meet IEEE Std 1149.1-
1990 Documentation Requirement 12.3.1.b.iv.3455

Examples
attribute REGISTER_DESCRIPTION of ttl74bct8374 : entity is
 "BCR ('The Boundary Control Register is a design-specific " &
 "test data register used to specify the test " &
 "function performed by the RUNT instruction.')";3460

See Also constant REGISTER_ACCESS (BSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 84 31-Aug-1992

attribute REGISTER_RESET (HSDL devices)

Description This optional "attribute" statement indicates the patterns loaded into test
registers that are reset during Test-Logic-Reset state and at power-up. It
ensures data integrity between the test controller and the UUT for user-defined3465
test registers. An example of this is already defined in IEEE Std 1149.1-1990 for
the instruction register. The standard states that the instruction register always
loads the IDCODE instruction, or if not defined, the BYPASS instruction, on
power-up or Test-Logic-Reset.

Syntax3470

attribute REGISTER_RESET of <device id> : entity is
 "<Register Reset List>";

<Register Reset List> is:
<Register Reset>
<Register Reset>, <Register Reset>3475
<Register Reset>,...<Register Reset>

<Register Reset> is:
<Register> (<Reset Value>)

<Reset Value> is:
<Pattern>3480
<Symbol Name>

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.

<Register> A <VHDL identifier> giving the name of a3485
previously defined test register. The device
modifies the named test register on power-up
and Test-Logic-Reset to the indicated value.
Only the test register that are modified need to
be listed. A test register may not be listed more3490
than once.

<Reset Value> A <VHDL integer> giving the value that is
loaded into the test register on power-up and
Test-Logic-Reset. The pattern or symbol name
should not contain any don't-care bits.3495

Examples
attribute REGISTER_RESET of My_IC : entity is
 "INSTRUCTION (BYPASS)," &
 "BCR (PSA)";

See Also attribute REGISTER_ACCESS (BSDL).3500

Revision A HSDL Syntax Specification

PRELIMINARY 85 31-Aug-1992

attribute REGISTER_SYMBOLS (HSDL devices)

Description This optional "attribute" statement associates a symbol table with a test register.
The TDI or TDI/TDO symbols named in the symbol table can then be shifted into
the specified test register, and the TDI/TDO or TDO symbols named in the
symbol table can be used as replacements for bit patterns that are captured and3505
shifted out of the specified test register. The test register can be controlled
symbolically by using names instead of numbers. Usability is increased because
the test engineer no longer needs to remember the bit patterns, just the names.

Syntax

attribute REGISTER_SYMBOLS of <device id> : entity is3510
 "<Register Symbol List>";

<Register Symbol List> is:
<Register Symbols>
<Register Symbols>, <Register Symbols>
<Register Symbols>,...<Register Symbols>3515

<Register Symbols> is:
<Register> (<Symbol Table Name>)

Parameters

<device id> A <VHDL identifier> giving the name of the
entity.3520

<Register Symbol List> Each test register of the device may have one
symbol table associated with it. Neither all the
test registers nor all the symbol tables must be
listed.

<Register> A <VHDL identifier> giving the name of a3525
previously defined test register to attach a
symbol table to.

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table to attach to the
test register. A symbol table may be attached to3530
any number of test registers.

Examples
attribute REGISTER_SYMBOLS of <device id> : entity is
 "BCR (BCR_Opcodes)";

See Also attribute BUS_SYMBOLS (HSDL), attribute SYMBOL_OF_TDI (HSDL), attribute3535
SYMBOL_OF_TDO (HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 86 31-Aug-1992

attribute SYMBOL_DEFAULT (HSDL)

Description This optional "attribute" statement classifies one of the symbols of a symbol
table as the default symbol. The default symbol matches any value not
specifically assigned to any symbol in the symbol table. A default symbol is3540
analogous to the BYPASS instruction. The BYPASS instruction is selected for
any instruction pattern not specifically assigned to an instruction in the
INSTRUCTION_OPCODE attribute.

Syntax

attribute SYMBOL_DEFAULT of <Symbol Table Name> : constant is3545
 "<Symbol Name>";

Parameters

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table.

<Symbol Name> A <VHDL identifier> giving the name of the3550
symbol in the specified symbol table to be
classified as the default. This symbol is used by
the test controller to represent any value not
specifically assigned to a symbol in the symbol
table.3555

Examples
attribute SYMBOL_DEFAULT of BCR_Opcodes : constant is "PSA";

See Also attribute INSTRUCTION_OPCODE (BSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 87 31-Aug-1992

attribute SYMBOL_DESCRIPTION (HSDL)

Description This optional "attribute" statement provides descriptions of the symbols in a3560
symbol table. Any or all of the symbols defined in the symbol table may have a
description. The description should provide enough information to the user so
that no additional documentation is necessary in order to understand the use and
meaning of the symbol name.

Syntax3565

attribute SYMBOL_DESCRIPTION of <Symbol Table Name> : constant is
 "<Symbol Description Table>";

<Symbol Description Table> is:
<Symbol Description Entry>
<Symbol Description Entry>, <Symbol Description Entry>3570
<Symbol Description Entry>,...<Symbol Description Entry>

<Symbol Description Entry> is:
<Symbol Name> ('<Symbol Description>')

Parameters

<Symbol Table Name> A <VHDL identifier> giving the name of a3575
previously defined symbol table.

<Symbol Description Table> A string associating each symbol name in the
symbol table with a description. Each symbol
name may be listed at most one time.

<Symbol Description Entry> Each entry provides a description for a symbol.3580

<Symbol Name> A <VHDL identifier> giving the name of a
symbol previously defined in the named symbol
table.

<Symbol Description> A string providing a description of the use and
meaning of the symbol.3585

Examples
attribute SYMBOL_DESCRIPTION of BCR_Opcodes : constant is
 "SAMTOG ('Samples device inputs on input bus; toggles " &
 "device outputs from output bus.')," &
 "PRPG ('Conducts 16-bit Pseudo-Random Pattern " &3590
 "Generation using the contents of the input and " &
 "output buses of the Boundary-Scan register as " &
 "an initial value. The Q outputs of the device " &
 "are set to the value in the output bus. A new " &
 "pattern is generated on each TCK in " &3595
 "Run-Test/Idle state.')," &
 "PSA ('Conducts 16-bit Parallel Signature Analysis " &
 "using the contents of the input and output " &
 "buses of the Boundary-Scan register as an " &
 "initial value. The Q outputs of the device " &3600
 "are set to the value in the output bus. A " &
 "new checksum is generated on each TCK in " &
 "Run-Test/Idle state.')," &
 "PSAPRPG ('Simultaneous 8-bit PSA on the D inputs and " &
 "8-bit PRPG on the Q outputs.')";3605

See Also constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 88 31-Aug-1992

attribute SYMBOL_OF_TDI (HSDL)

Description This optional "attribute" statement categorizes certain symbol names in a symbol
table as being valid only for shifting into TDI and applying to the system logic.
Symbols listed in this attribute can be shifted in and applied to the UUT, but are3610
never used as replacements for values that are captured and shifted out of the
UUT.

TDI symbols have fewer restrictions than TDO symbols or TDI/TDO symbols.
The values associated with two TDI symbols can be ambiguous and can even be
identical. For example, the SAMPLE and PRELOAD instructions have identical3615
instruction bit patterns. The ambiguity is acceptable because the test controller
knows what bit pattern to shift in when given a TDI symbol name.

Syntax

attribute SYMBOL_OF_TDI of <Symbol Table Name> : constant is
 "<TDI Symbol List>";3620

<TDI Symbol List> is:
<Symbol Name>
<Symbol Name>, <Symbol Name>
<Symbol Name>,...<Symbol Name>

Parameters3625

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table.

<TDI Symbol List> A list of the symbol names that are only valid for
shifting into TDI. Symbols not appearing in the
SYMBOL_OF_TDI or SYMBOL_OF_TDO3630
attributes are valid for both TDI and TDO. A
TDI symbol name may not also appear in the
SYMBOL_OF_TDO attribute. A symbol name
may not appear more than once in the list.

<Symbol Name> A <VHDL identifier> giving the name of a3635
symbol in the specified symbol table to be
designated as a TDI symbol.

Examples
attribute SYMBOL_OF_TDI of BIST_Symbols : constant is
 "TEST_BOUNDARY, TEST_CORE, FRY_DEVICE, BACKDRIVE_OUTPUTS";3640

See Also attribute SYMBOL_OF_TDO (HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 89 31-Aug-1992

attribute SYMBOL_OF_TDO (HSDL)

Description This optional "attribute" statement categorizes certain symbol names in a symbol
table as being valid only for represented bit patterns that are captured from the
system logic and shifted out of TDO. Symbols listed in this attribute are used as3645
replacements for values that are captured and shifted out of the UUT, but can
never be shifted in and applied to the system logic.

TDO symbols cannot be ambiguous or identical. Ambiguous values are values
containing don't-care bits such that two different values could represent the
same binary pattern. Ambiguity is unacceptable for TDO symbols because when3650
a bit pattern is captured and shifted out, the test controller cannot determine
which symbol name to use as a replacement for the bit pattern. Two different
symbols both represent that value, so a unique replacement is not possible. For
this reason, ambiguous TDO symbols are not allowed.

Syntax3655

attribute SYMBOL_OF_TDO of <Symbol Table Name> : constant is
 "<TDO Symbol List>";

<TDO Symbol List> is:
<Symbol Name>
<Symbol Name>, <Symbol Name>3660
<Symbol Name>,...<Symbol Name>

Parameters

<Symbol Table Name> A <VHDL identifier> giving the name of a
previously defined symbol table.

<TDO Symbol List> A list of the symbol names that are only valid for3665
replacing bit patterns shifted out of TDO.
Symbols not appearing in the
SYMBOL_OF_TDI or SYMBOL_OF_TDO
attributes are valid for both TDI and TDO. A
TDO symbol name may not also appear in the3670
SYMBOL_OF_TDI attribute. A symbol name
may not appear more than once in the list.

<Symbol Name> A <VHDL identifier> giving the name of a
symbol in the specified symbol table to be
designated as a TDO symbol.3675

Examples
attribute SYMBOL_OF_TDO of BIST_Symbols : constant is
 "BIST_WORKED, ALU_FAILURE, CU_FAILURE, TOTAL_FAILURE";

See Also attribute SYMBOL_OF_TDI (HSDL), constant SYMBOL_TABLE (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 90 31-Aug-1992

constant DYNAMIC_PATH (HSDL modules)3680

Description This "constant" declaration is one of three that defines the scan paths of a
module. This statement defines a dynamic path, a scan path whose contents
are known at the time the HSDL file is written, but the placement of those
contents in the scan path varies during the application of the test. Items in the
dynamic path may be switched in and out of the scan path by controlling the3685
connection of their TMS signals.

The dynamic path is useful for describing limited ad-hoc reconfiguration of the
scan path in which only the TMS signals are modified. When an item in a
dynamic path is active, the TMS signal of the item is connected to the TMS
signal of the dynamic path as a whole. When inactive, the TMS signal of the3690
item may be pulled high or low, placing the item in Test-Logic-Reset or Run-
Test/Idle state, respectively.

The modification of TMS signals is outside the control of HSDL. The dynamic
path merely describes how the scan path reconfiguration of the UUT operates,
not how to control it. This control must be performed elsewhere.3695

This statement cannot describe scan paths whose clocks are stopped "in place"
and resynchronized with the TAP state diagram later. TAP signals cannot be
switched between scan paths with this statement. A dynamic path simply allows
items to be placed into and removed from the scan path, and to describe what
happens to these items when they are removed from the scan path.3700

A dynamic path bears a strong resemblance to the case statement in many
programming languages. Each case statement value selects a different
configuration of the dynamic path.

Syntax

constant <Dynamic Path Name> : DYNAMIC_PATH :=3705
 "<Dynamic Path Table>";

<Dynamic Path Table> is:
<Dynamic Path Case>,...<Dynamic Path Case>

<Dynamic Path Case> is:
<Dynamic Case Value> (<Dynamic Path List>)3710

<Dynamic Case Value> is:
<VHDL Integer>

<Dynamic Path List> is:
<Dynamic Path Configuration>
<Dynamic Path Configuration>, <Dynamic Path Configuration>3715
<Dynamic Path Configuration>,...<Dynamic Path Configuration>

<Dynamic Path Configuration> is:
<Static Path Entry> : <Dynamic Path State>

<Dynamic Path State> is:
3720

<Dynamic Path Name>
1
0

Revision A HSDL Syntax Specification

PRELIMINARY 91 31-Aug-1992

Parameters

<Dynamic Path Name> A <VHDL identifier> defining the name of the3725
dynamic path. The name must be unique.

<Dynamic Path Table> This string describes the different configurations
allowed for the dynamic path. At least two
cases must be present. If only one case is
needed, use a static path.3730

<Dynamic Path Case> Each dynamic path case defines a case value
and describes the configuration of the items in
the dynamic path when the dynamic path case
is active.

<Dynamic Case Value> A <VHDL Integer> that identifies the scan path3735
configuration. Each dynamic case value must
be unique within the DYNAMIC_PATH constant.
At execution time, the test controller must be
kept informed of the current case value for the
dynamic path, so that it may conduct scans3740
appropriately. Other software, hardware, etc. is
needed to ensure that the scan path in the
hardware is actually changed to reflect the
current configuration.

<Dynamic Path List> The dynamic path list describes each item3745
contained in the dynamic path and its test-
mode-select state. The dynamic path list for
each dynamic case value must repeat the same
dynamic path items. The state of every
dynamic path item must be described in every3750
case.

<Dynamic Path Configuration> Each configuration lists a dynamic path item
and indicates the state of the item by describing
the state of its TAP_SCAN_MODE port.

<Static Path Entry> Each dynamic path item can be any single item3755
that can be contained in a static path: a
member device or module, another path
described in the module, or an external path in a
member module.

<Dynamic Path State> The dynamic path state indicates the state of3760
the TAP_SCAN_MODE port of the dynamic
path item. Using the name of the dynamic path
indicates that the dynamic path item is
connected to the TAP_SCAN_MODE port of the
scan path. A 1 or 0 indicates that the3765
TAP_SCAN_MODE port of the dynamic path
item is either high or low, respectively, placing
the device in Test-Logic-Reset or Run-Test/Idle.

The dynamic path state keeps the test controller
database consistent with the hardware state by3770
informing the test controller of the current state
of the hardware. Thus the test controller can
apply any REGISTER_RESET actions which

Revision A HSDL Syntax Specification

PRELIMINARY 92 31-Aug-1992

may be present in the devices of the dynamic
path.3775

Examples
constant short : STATIC_PATH := "";
constant c40switch : DYNAMIC_PATH := -- switch 'C40 out of path
 "0 (u29: 0, short: c40switch)," & -- 'C40 is in Run-Test/Idle
 "1 (u29: c40switch, short: 0)" ; -- 'C40 is in scan path3780

See Also attribute DYNAMIC_PATH_RESET (HSDL modules), attribute
REGISTER_RESET (HSDL devices), attribute TAP_SCAN_MODE (BSDL),
constant STATIC_PATH (HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 93 31-Aug-1992

constant EXTERNAL_PATH (HSDL modules)

Description This optional "constant" declaration is one of three that defines the scan paths of3785
the module. This statement defines an external path, a scan path whose
contents may not be known at the time the HSDL file is written. An external path
often represents a scannable backplane slot, which a scannable board can be
inserted into at a later time. When describing the backplane, the slots are
described as external paths and thus any scannable board can be inserted at a3790
later time. This scannable board is also described by an HSDL module file, and
either a higher-level HSDL module file or the test controller can be used to
indicate which HSDL module is plugged into the slot.

External paths can also represent chip sockets, daughterboard connectors, test
controller scan connectors, and so forth. Consider the board shown below.3795

This example board contains two backplane slots, one chip socket, and one
card-edge connector, all of which are scannable. No scannable devices or
modules are wired onto the board, only connectors for plugging in other things
later. From the HSDL point of view, this module appears as shown here.3800

= external path

So the module is composed of four external paths and no members. Every
board has at least one external path, the one containing the ports used by the
test controller to control the board. External paths "complete" the board scan
path, making it a circular path that includes the test controller.3805

The definition of an external path is such that, under the proper circumstances,
either the test controller or a scannable module could be plugged into the
external path. Conceptually, and given the proper hardware design, the test

Revision A HSDL Syntax Specification

PRELIMINARY 94 31-Aug-1992

controller could control the UUT from any external path on the board. An
external path contains one set of TAP signals, as described by the attributes3810
TAP_SCAN_IN, TAP_SCAN_OUT, TAP_SCAN_CLOCK, TAP_SCAN_MODE,
and TAP_SCAN_RESET. If a module has more than one set of TAP signals, all
external paths must be defined to establish which path is associated with which
set of signals. If the module has only one set of TAP signals, no external path
definition is necessary, because the signals associated with the board scan path3815
can be deduced. In this case, the board has only one external path, and its
definition is optional to simplify writing HSDL for a typical board.

Syntax

constant <External Path Name> : EXTERNAL_PATH :=
 "<Port Name List>";3820

<Port Name List> is:
<Port Name>, <Port Name>, <Port Name>, <Port Name>
<Port Name>, <Port Name>, <Port Name>, <Port Name>, <Port Name>

Parameters

<External Path Name> A <VHDL identifier> defining the name of the3825
external path. This name must be unique. By
default, the external path is public.

<Port Name List> This string identifies the ports of the module that
control or are controlled by the external path.
Four or five port names may be listed: one3830
TAP_SCAN_IN port, one TAP_SCAN_OUT
port, one TAP_SCAN_CLOCK port, one
TAP_SCAN_MODE port, and optionally one
TAP_SCAN_RESET port. Each port name
listed must appear in one of the TAP_SCAN_IN3835
/ TAP_SCAN_OUT / TAP_SCAN_CLOCK /
TAP_SCAN_MODE / TAP_SCAN_RESET
attribute statements. The port names may be
listed in any order.

<Port Name> The port name listed must adhere to the3840
following rules:

• A port listed in the TAP_SCAN_IN attribute
must have mode "in".

• A port listed in the TAP_SCAN_OUT
attribute must have mode "out".3845

• Ports listed in the TAP_SCAN_CLOCK,
TAP_SCAN_MODE, and
TAP_SCAN_RESET attributes must all
have mode in, out, or inout. If all are
defined as out, the external path is a pure3850
unit-under-test connector. A module may
be connected to the external path, but a test
controller may not. The external path is
designed to control a scan path. If all are
defined as in, the external path is a pure test3855
connector. A test controller may be
connected to the external path, but a
module may not. The external path is

Revision A HSDL Syntax Specification

PRELIMINARY 95 31-Aug-1992

designed to allow a test controller to control
the module. If all are defined as inout, the3860
external path may be either a test connector
or a unit-under-test connector, and either a
module or a test controller may be
connected.

Examples3865
port (TDI, TCK, TMS, TRST: in bit; TDO: out bit);
 .
 .
 .
attribute TAP_SCAN_IN of TDI : signal is true;3870
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, both);
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_RESET of TRST : signal is true;
 .3875
 .
 .
-- scannable connector J1
constant j1 : EXTERNAL_PATH := "TDI, TDO, TCK, TMS, TRST";

See Also constant STATIC_PATH (HSDL modules), attribute TAP_SCAN_CLOCK3880
(BSDL), attribute TAP_SCAN_IN (BSDL), attribute TAP_SCAN_MODE (BSDL),
attribute TAP_SCAN_OUT (BSDL), attribute TAP_SCAN_RESET (BSDL), port
(BSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 96 31-Aug-1992

constant STATIC_PATH (HSDL modules)

Description This "constant" declaration is one of three that define the scan paths of a3885
module. This statement defines a static path, a scan paths whose contents are
known and fixed at the time the HSDL file is written. A static path describes the
usual interconnection of scannable devices and boards: the TDI/TDO pins
connected serially, with the TMS, TCK, and TRST of all devices and boards
wired together. The figure here shows a typical static path.3890

TDI TDO

TMS TCK TRST

TDI TDO

TMS TCK TRST

TDI TDO

TMS TCK TRST

TDITDO TCKTMS TRST

U1 U2 U3

J1

The static path depicted here has four items in it: three devices and one
external path. Since an external path describes the ports used to control it, the
static path containing the external path completely describes the netlist of the
test bus. All connectivity information for TDI, TDO, TMS, TCK, and TRST3895
signals can be derived.

Note that a static path appears circular when examining its TDI-to-TDO
connections. If all four entries in the example static path shown here were
external paths with suitable wiring, the choice of which external path represents
the TDI input to and TDO output from the module would be arbitrary. Any of the3900
external paths could be chosen to plug the test controller into, in which case TDI
begins at that point and TDO ends at that point.

On simple boards consisting of one external path and a straightforward serial
connection between scannable devices and modules, only one path needs to be
defined: a static path simply listing all the scannable devices and modules in3905
order. In this case, an external path containing the TAP signals for the module
is implicit, and it is assumed to be the first entry in the static path.

Syntax

constant <Static Path Name> : STATIC_PATH :=
 "<Static Path List>";3910

or

constant <Static Path Name> : STATIC_PATH := "";

<Static Path List> is:
<Static Path Entry>
<Static Path Entry>, <Static Path Entry>3915
<Static Path Entry>,...<Static Path Entry>

Revision A HSDL Syntax Specification

PRELIMINARY 97 31-Aug-1992

<Static Path Entry> is:
<Member Name>
<Static Path Name>
<Dynamic Path Name>3920
<Qualified External Path Name>

<Qualified External Path Name> is:
<External Path Name>
<Member Name>.<External Path Name>

Parameters3925

<Static Path Name> A <VHDL identifier> defining the name of the
static path. This name must be unique.

<Static Path List> The string that defines the composition and
ordering of the static path. The leftmost static
path entry is closest to TDI; the rightmost static3930
path entry is closest to TDO.

An empty static path list identifies a scan path
containing nothing; i.e. a "short" in the scan
path. This construct can be useful when
resolving external paths and when constructing3935
dynamic paths.

<Static Path Entry> Each entry identifies a device, a static path, a
dynamic path, or an external path that is
included in this static path. The TAP signals of
the entry are implicitly connected to the TAP3940
signals of the path. The left-to-right ordering of
entries indicates the TDI-to-TDO ordering of the
scan path.

<Qualified External Path Name> The name of an external path. The
external path can be defined in this module or3945
within a member of this module. External paths
appearing in a static path describe the
connections of the TAP ports of the module to
the TAP signals of the scan path.

Examples3950
constant boardpath : STATIC_PATH := "J1, U1, U2, U3";

See Also attribute MEMBERS (HSDL modules), constant DYNAMIC_PATH (HSDL
modules), constant EXTERNAL_PATH (HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 98 31-Aug-1992

constant SYMBOL_TABLE (HSDL)

Description This optional "constant" declaration creates a symbol table. A symbol table3955
defines symbol names and equates them to a list of values. The symbol name
may be used in place of any of the values after it is defined. Symbols increase
usability and readability. Instruction opcodes are similar to symbols, in that each
instruction name represents any of the possible instruction bit patterns. A
symbol table can later be associated with any test register, any bus, or any port3960
of the entity. Thus, symbolic names can be defined for a constant to be shifted
into or shifted out of any element of the design.

Instruction names are examples of symbols intended for shifting into a device
and applying to the device logic. In HSDL this type of symbol is called a TDI
symbol, because it is intended to be shifted into TDI. Symbols may also be3965
defined that are intended to represent data captured by the device and shifted
out through TDO; this type of symbol is called a TDO symbol.

Why make a distinction between TDI and TDO symbols? IEEE Std 1149.1-1990
contains the precedent. The data being shifted into the instruction register and
applied to the "test logic" has a different meaning from the data captured by the3970
instruction register and shifted out of the device. The former is an instruction,
the latter is status information. For the instruction register, TDI symbols are
instruction names and TDO symbols are status values. Other, design-specific
test registers may exhibit similar properties.

When a table is defined, the symbols are assumed to be both TDI and TDO3975
symbols. They can be further defined as TDI or TDO symbols by listing them in
the SYMBOL_OF_TDI and SYMBOL_OF_TDO attributes.

Syntax

constant <Symbol Table Name> : SYMBOL_TABLE :=
 "<Symbol Definitions>";3980

<Symbol Definitions> is:
<Symbol Definition>
<Symbol Definition>, <Symbol Definition>
<Symbol Definition>,...<Symbol Definition>

<Symbol Definition> is:3985
<Symbol Name> (<Symbol Values>)

<Symbol Values> is:
<Symbol Value>
<Symbol Value>, <Symbol Value>
<Symbol Value>,...<Symbol Value>3990

<Symbol Value> is:
<Pattern>

Parameters

<Symbol Table Name> A <VHDL identifier> defining the name of the
symbol table. This name must be unique.3995

<Symbol Definitions> A string listing the names of the symbols being
defined and their associated values.

<Symbol Definition> Each symbol definition defines a symbol name
and associates values with it. A symbol name
can only be defined once per symbol table, but4000

Revision A HSDL Syntax Specification

PRELIMINARY 99 31-Aug-1992

may appear with different values in another
symbol table.

<Symbol Name> A <VHDL identifier> defining the name of the
symbol. The symbol table creates a new scope
of names, so the symbol name must be unique4005
within the symbol table but can be identical to
the other symbols names or even the names of
other elements of the entity. A well-known
example is the BYPASS instruction, which is a
symbol with the same name as a test register.4010

<Symbol Values> A list of values associated with the symbol.
None of the values in the symbol table as a
whole may be duplicated or ambiguous.
Ambiguous values are values containing don't-
care bits such that two different values could4015
represent the same binary pattern.

<Symbol Value> A value associated with the symbol.

<Pattern> The pattern is a binary string that defines the
symbol value. X's are allowed in the pattern to
represent don't-care bits.4020

Examples
constant BCR_Opcodes : SYMBOL_TABLE :=
 "SAMTOG (00)," &
 "PRPG (01)," &
 "PSA (10)," &4025
 "PSAPRPG (11)";

See Also attribute BOUNDARY_SYMBOLS (HSDL devices), attribute BUS_SYMBOLS
(HSDL), attribute INSTRUCTION_OPCODE (BSDL), attribute
REGISTER_SYMBOLS (HSDL devices), attribute SYMBOL_DEFAULT (HSDL),
attribute SYMBOL_DESCRIPTION (HSDL), attribute SYMBOL_OF_TDI (HSDL),4030
attribute SYMBOL_OF_TDO (HSDL).

Revision A HSDL Syntax Specification

PRELIMINARY 100 31-Aug-1992

use HSDL_device.all (HSDL devices)

Description This "use" statement identifies the VHDL package needed to define the
attributes of an HSDL device. This package defines several extensions to
BSDL, making possible the use of the new HSDL device features. The package4035
contents are primarily ignored by an HSDL translator, but are necessary in a
VHDL environment.

Syntax

use HSDL_device.all;

Parameters4040

None.

Examples
use HSDL_device.all;

See Also use (BSDL), use HSDL_module.all (HSDL modules).

Revision A HSDL Syntax Specification

PRELIMINARY 101 31-Aug-1992

use HSDL_module.all (HSDL modules)4045

Description This "use" statement identifies the VHDL package needed to define the
attributes of an HSDL module. This package defines several extensions to
BSDL, making possible the definition of boards, boxes, multi-chip modules,
subsystems, and systems. The package contents are primarily ignored by an
HSDL translator, but are necessary in a VHDL environment.4050

Syntax

use HSDL_module.all;

Parameters

None.

Examples4055
use HSDL_module.all;

See Also use (BSDL), use HSDL_device.all (HSDL devices).

Revision A HSDL Syntax Specification

PRELIMINARY 102 31-Aug-1992

B.
HSDL Standard VHDL Package Definitions

These packages are used by HSDL to define the extra attributes and subtypes used in HSDL4060
device and module entities. The package contents are not used by an HSDL translator, but are
necessary so that an HSDL description can be used successfully in a VHDL environment.

Note that only packages are needed for HSDL; no package bodies are required.

Consideration was given to having a third package containing the attributes and subtypes common to both device and module
HSDL files, but the number of HSDL packages needed per file would then have been two, reducing ease of use.4065

B.1. HSDL_device Standard VHDL Package
package HSDL_device is

-- Device Description Declarations
 attribute DEVICE_DESCRIPTION : string;4070

-- Port Description Declarations
 attribute PORT_DESCRIPTION : string;

-- Instruction Register Declarations4075
 attribute INSTRUCTION_NORMAL : string;
 attribute INSTRUCTION_TEST : string;
 attribute INSTRUCTION_DESCRIPTION : string;

-- Symbol Table Declarations4080
 subtype SYMBOL_TABLE is string;
 attribute SYMBOL_OF_TDI : string;
 attribute SYMBOL_OF_TDO : string;
 attribute SYMBOL_DEFAULT : string;
 attribute SYMBOL_DESCRIPTION : string;4085

-- Register Information Declarations
 attribute REGISTER_COMPOSITION : string;
 attribute REGISTER_CAPTURE : string;
 attribute REGISTER_RESET : string;4090
 attribute REGISTER_SYMBOLS : string;
 attribute REGISTER_DESCRIPTION : string;

-- Boundary Register Declarations
 attribute BOUNDARY_SYMBOLS : string;4095

-- Bus Declarations
 attribute BUS_COMPOSITION : string;
 attribute BUS_SYMBOLS : string;
 attribute BUS_DESCRIPTION : string;4100

-- Constraint Declarations
 attribute CONSTRAINTS : string;
 attribute CONSTRAINT_DESCRIPTION : string;

4105
end HSDL_device ;

B.2. HSDL_module Standard VHDL Package
package HSDL_module is

-- Module Description Declarations4110
 attribute MODULE_DESCRIPTION : string;

-- Port Description Declarations
 attribute PORT_DESCRIPTION : string;

4115
-- Member Declarations
 attribute MEMBERS : string;
 attribute MEMBER_DESCRIPTION : string;

Revision A HSDL Syntax Specification

PRELIMINARY 103 31-Aug-1992

-- Symbol Table Declarations4120
 subtype SYMBOL_TABLE is string;
 attribute SYMBOL_OF_TDI : string;
 attribute SYMBOL_OF_TDO : string;
 attribute SYMBOL_DEFAULT : string;
 attribute SYMBOL_DESCRIPTION : string;4125

-- Bus Declarations
 attribute BUS_COMPOSITION : string;
 attribute BUS_SYMBOLS : string;
 attribute BUS_DESCRIPTION : string;4130

-- Path Declarations
 subtype EXTERNAL_PATH is string;
 subtype DYNAMIC_PATH is string;
 attribute DYNAMIC_PATH_RESET : string;4135
 subtype STATIC_PATH is string;

-- Connection Declarations
 attribute CONNECTIONS : string;

4140
-- Constraint Declarations
 attribute CONSTRAINTS : string;
 attribute CONSTRAINT_DESCRIPTION : string;

end HSDL_module;4145

